Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02923414
Other study ID # 52187
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date September 28, 2016
Est. completion date March 8, 2019

Study information

Verified date April 2018
Source University of Aarhus
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Atrial fibrillation is the most common heart rhythm disorder. For patients suffering atrial fibrillation direct current cardioversion is performed to reduce patients symptoms and prevent disease progression. The optimal energy selection for biphasic cardioversion is unknown.

We aim to investigate the efficiency and safety of a high energy shock protocol (360 J) versus a standard escalating shock protocol (125-150-200 J) in cardioversion of atrial fibrillation.


Description:

The optimal energy selection for biphasic direct current (DC) cardioversion of atrial fibrillation is unknown. The energy delivered should be sufficient to achieve prompt cardioversion but without the risk of inducing any potential injury e.g. skin burns, myocardial stunning or post-cardioversion arrhythmias. The use of an escalating protocol, with a low energy initial shock, has been considered conventional practice, originally to avoid post cardioversion arrhythmias when using monophasic shocks.(1) This practice has been directly transferred to biphasic cardioversion. The European Society of Cardiology 2016 guidelines (2) and the American Heart Association/American College of Cardiology 2014 guidelines on the management of atrial fibrillation (3) do not recommend any specific energy settings, whereas the European Resuscitation Council 2010 guidelines for cardiopulmonary resuscitation (4) recommend a starting energy level of 120-200 J with subsequent escalating energy setting.

Previously, a non-escalating protocol (200 J) (5) has been found to have a significantly higher first shock success resulting in fewer shock deliveries without compromising safety compared with a low energy escalating shock protocol (100-150-200 J). Further, a study found fewer arrhythmic complications with increasing energy suggesting an 'upper limit of vulnerability'. It is well-established that biphasic shocks induce fewer post-shock arrhythmias (6), skin burns (7) and shorter periods of myocardial stunning compared with monophasic shocks.(8) Importantly, no correlation between increasing biphasic energy delivery and any complications was found in these studies. Nonetheless, the efficiency and safety of a high energy shock (360 J) biphasic protocol compared with a conventional low energy escalating protocol is unknown. Accordingly, this study aims to compare the efficiency and safety of a high energy protocol (360-360-360 J) versus a standard escalating protocol (125-150-200 J). We hypothesise that a high energy cardioversion protocol is more effective compared to standard escalating energy protocol, without compromising safety.


Recruitment information / eligibility

Status Completed
Enrollment 276
Est. completion date March 8, 2019
Est. primary completion date March 8, 2019
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria:

- >18 years of age, scheduled for cardioversion of atrial fibrillation. Patients with atrial fibrillation for =48 hours may be cardioverted immediately. Patients with atrial fibrillation for >48 hours will be required to have a documented weekly international normalized ratio (INR) =2.0 (including within 48 hours of cardioversion) or treatment with non-vitamin K oral anticoagulant for three weeks or longer. Alternatively, a transoesophageal echocardiogram documenting absence of intracardiac thrombi is accepted and cardioversion can be performed on treatment with low molecular weight heparin.

Exclusion Criteria:

- Pregnancy, haemodynamically unstable atrial fibrillation, other arrhythmias than atrial fibrillation, untreated hyperthyroidism

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Standard escalating shocks
125 J, 150 J, 200 J
High energy shock protocol
360 J, 360 J, 360 J.

Locations

Country Name City State
Denmark Randers Regional Hospital Randers

Sponsors (2)

Lead Sponsor Collaborator
University of Aarhus Randers Regional Hospital

Country where clinical trial is conducted

Denmark, 

References & Publications (8)

Ambler JJ, Deakin CD. A randomized controlled trial of efficacy and ST change following use of the Welch-Allyn MRL PIC biphasic waveform versus damped sine monophasic waveform for external DC cardioversion. Resuscitation. 2006 Nov;71(2):146-51. Epub 2006 Sep 20. — View Citation

Deakin CD, Ambler JJ. Post-shock myocardial stunning: a prospective randomised double-blind comparison of monophasic and biphasic waveforms. Resuscitation. 2006 Mar;68(3):329-33. Epub 2005 Dec 27. — View Citation

Deakin CD, Nolan JP, Sunde K, Koster RW. European Resuscitation Council Guidelines for Resuscitation 2010 Section 3. Electrical therapies: automated external defibrillators, defibrillation, cardioversion and pacing. Resuscitation. 2010 Oct;81(10):1293-304. doi: 10.1016/j.resuscitation.2010.08.008. — View Citation

Glover BM, Walsh SJ, McCann CJ, Moore MJ, Manoharan G, Dalzell GW, McAllister A, McClements B, McEneaney DJ, Trouton TG, Mathew TP, Adgey AA. Biphasic energy selection for transthoracic cardioversion of atrial fibrillation. The BEST AF Trial. Heart. 2008 Jul;94(7):884-7. Epub 2007 Jun 25. — View Citation

January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW; ACC/AHA Task Force Members. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014 Dec 2;130(23):e199-267. doi: 10.1161/CIR.0000000000000041. Epub 2014 Mar 28. Erratum in: Circulation. 2014 Dec 2;130(23):e272-4. — View Citation

Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P; ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016 Oct 7;37(38):2893-2962. doi: 10.1093/eurheartj/ehw210. Epub 2016 Aug 27. — View Citation

Lown B. Electrical reversion of cardiac arrhythmias. Br Heart J. 1967 Jul;29(4):469-89. — View Citation

Page RL, Kerber RE, Russell JK, Trouton T, Waktare J, Gallik D, Olgin JE, Ricard P, Dalzell GW, Reddy R, Lazzara R, Lee K, Carlson M, Halperin B, Bardy GH; BiCard Investigators. Biphasic versus monophasic shock waveform for conversion of atrial fibrillation: the results of an international randomized, double-blind multicenter trial. J Am Coll Cardiol. 2002 Jun 19;39(12):1956-63. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Efficacy: Successful cardioversion Successful cardioversion is defined as the proportion of patients in sinus rhythm one minute after cardioversion or cardioversion attempt (to a maximum of the 3 shocks in the protocol). One minute following cardioversion
Secondary Efficacy: First shock success Successful cardioversion following the first cardioversion attempt (125 J versus 360 J). Following first cardioversion attempt
Secondary Safety: Arrhythmic events and ECG-changes following cardioversion Any post-cardioversion arrhythmias will be recorded using ECG-holtering four hours post cardioversion. Further ECG changes will be measured (sinus node dysfunction, atrioventricular delay, ventricular tachyarrhythmia or ventricular premature complexes, ST-segment deviations and recurrence of AF). Within four hours following cardioversion (until discharge)
Secondary Safety: Skin-discomfort, skin burns or itching Patients self-assessment of skin discomfort and objective measurement of skin burns or itching. Two hours after cardioversion
Secondary Safety: Troponin I level changes following cardioversion To evaluate changes in high sensitive cardiac troponin I levels between a baseline measurement before cardioversion and the level four hours following cardioversion. Four hours after cardioversion
Secondary Safety: Echocardiographic evaluation following cardioversion Comparing a baseline echocardiographic evaluation with an evaluation performed two after cardioversion, e.g. left ventricular function using standard echocardiographic measurements. Two hours after cardioversion
See also
  Status Clinical Trial Phase
Recruiting NCT05654272 - Development of CIRC Technologies
Terminated NCT04115735 - His Bundle Recording From Subclavian Vein
Completed NCT04571385 - A Study Evaluating the Efficacy and Safety of AP30663 for Cardioversion in Participants With Atrial Fibrillation (AF) Phase 2
Completed NCT05366803 - Women's Health Initiative Silent Atrial Fibrillation Recording Study N/A
Completed NCT02864758 - Benefit-Risk Of Arterial THrombotic prEvention With Rivaroxaban for Atrial Fibrillation in France
Recruiting NCT05442203 - Electrocardiogram-based Artificial Intelligence-assisted Detection of Heart Disease N/A
Completed NCT05599308 - Evaluation of Blood Pressure Monitor With AFib Screening Feature N/A
Completed NCT03790917 - Assessment of Adherence to New Oral anTicoagulants in Atrial Fibrillation patiEnts Within the Outpatient registrY
Enrolling by invitation NCT05890274 - Atrial Fibrillation (AF) and Electrocardiogram (EKG) Interpretation Project ECHO N/A
Recruiting NCT05266144 - Atrial Fibrillation Patients Treated With Catheter Ablation
Recruiting NCT05316870 - Construction and Effect Evaluation of Anticoagulation Management Model in Atrial Fibrillation N/A
Not yet recruiting NCT06023784 - The Impact of LBBAP vs RVP on the Incidence of New-onset Atrial Fibrillation in Patients With Atrioventricular Block N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Recruiting NCT04092985 - Smart Watch iECG for the Detection of Cardiac Arrhythmias
Completed NCT04087122 - Evaluate the Efficiency Impact of Conducting Active Temperature Management During Cardiac Cryoablation Procedures N/A
Completed NCT06283654 - Relieving the Emergency Department by Using a 1-lead ECG Device for Atrial Fibrillation Patients After Pulmonary Vein Isolation
Recruiting NCT05416086 - iCLAS™ Cryoablation System Post-Market Clinical Follow-up (PMCF) Study N/A
Completed NCT05067114 - Solutions for Atrial Fibrillation Edvocacy (SAFE)
Completed NCT04546763 - Study Watch AF Detection At Home
Completed NCT03761394 - Pulsewatch: Smartwatch Monitoring for Atrial Fibrillation After Stroke N/A