Clinical Trials Logo

Arteriovenous Malformations clinical trials

View clinical trials related to Arteriovenous Malformations.

Filter by:

NCT ID: NCT05348902 Recruiting - Clinical trials for Locked-In Syndrome;Pulmonary Arteriovenous Malformation

Locked-in Syndrome Caused by Pulmonary Arteriovenous Malformation: A Case Report

Start date: October 1, 2021
Phase:
Study type: Observational

In this case, we report a case of atresia syndrome (LIS), a serious neurological disease caused by pulmonary arteriovenous fistula (PAVM). We present a previously healthy middle-aged woman who developed atresia syndrome after severe pontine infarction due to basilar artery occlusion due to undiagnosed arteriovenous malformation. This report reviewed the medical history, post-admission examination and related literature, and concluded that PAVM should be considered as the cause of implicit stroke, especially in young patients with right-to-left shunt, and should be actively treated.

NCT ID: NCT05276934 Recruiting - Clinical trials for Intracranial Aneurysm

Brain Imaging After Non-traumatic Intracranial Hemorrhage (SAVEBRAINPWI)

SAVEBRAINPWI
Start date: March 1, 2022
Phase:
Study type: Observational

The study is an observational prospective evaluation of an approved and unchanged clinical management, evaluating different diagnosis methods to assess brain perfusion in patients with an aneurysmal or AVM-related intracranial hemorrhage

NCT ID: NCT05125471 Recruiting - Clinical trials for Arteriovenous Malformations (Extracranial)

Cobimetinib In Extracranial Arteriovenous Malformations (COBI-AVM Study)

Start date: July 26, 2022
Phase: Phase 2
Study type: Interventional

The purpose of this open-label study is to evaluate the safety and efficacy of cobimetinib in extracranial AVM.

NCT ID: NCT05058482 Recruiting - Clinical trials for Intracranial Arteriovenous Malformations

Non-adhesive Liquid Embolic System in the Embolization of Cerebral Arteriovenous Malformations

Start date: December 2, 2021
Phase: N/A
Study type: Interventional

This clinical trial is to verify the safety and effectiveness of the Non-adhesive Liquid Embolic System(NALES) produced by Suzhou Hengrui Hongyuan Medical Technology Co., Ltd. in the process of clinical use to support the application of the National Medical Products Administration ( NMPA) product registration approval.

NCT ID: NCT04927156 Recruiting - Clinical trials for Acute Ischemic Stroke

Safety, Performance and Usability of BALT Medical Devices: The EVIDENCE Post Marketing Clinical Follow-up Platform

Start date: July 12, 2021
Phase:
Study type: Observational

BALT has designed an electronic platform to continue collecting clinical data as part of the post-marketing clinical follow-up of its devices. This platform is purely exploratory, without hierarchical order of the objectives and associated outcomes.

NCT ID: NCT04888936 Recruiting - Noonan Syndrome Clinical Trials

Clinical, Genetic, and Epidemiologic Study of Children and Adults With RASopathies

Start date: April 25, 2022
Phase:
Study type: Observational

Background: RASopathies are a group of conditions caused by a genetic change. People with a RASopathy may have developmental issues, cognitive disability, poor growth, and birth defects. They may also have an increased risk for developing cancer. Researchers want to learn more. Objective: To learn more about RASopathies, how genes and environmental factors contribute to cancer development in people with RASopathies, and the best way to find these cancers and other conditions early or prevent them. Eligibility: People of any age who have or may have a RASopathy, and their family members. Design: Participants will complete questionnaires about their personal and family medical history. Their medical records will be reviewed. Participants will give blood and urine samples. They will give a saliva or cheek cell sample. Some samples will be used for genetic testing. Participants may have a skin biopsy. Participants may have a physical exam by the RASopathies study team. They may also have exams by additional specialists, such as dentists; urologists; ear, nose, and throat doctors; and neurologists. Participants may have computed tomography of the face and mouth. They may have an ultrasound of the abdomen. They may have a bone density scan. They may have skeletal and/or spine x-rays. They may have magnetic resonance imaging of the brain, low back, chest, and/or heart. They may be photographed. Participants may have other tests, such as sleep, brain and heart electrical activity, speech and swallow, metabolism, hearing, eye, and colon function tests. Participants may sign separate consent forms for some tests. Participation will last indefinitely. Participants may be contacted once in a while by phone or mail. They may have follow-up visits.

NCT ID: NCT04865718 Recruiting - Aneurysm, Brain Clinical Trials

Intraoperative Laser Speckle Contrast Imaging of Cerebral Blood Flow

Start date: June 27, 2019
Phase:
Study type: Observational

The purpose of this research study is to evaluate the ability of laser speckle contrast imaging to visualize blood flow in real time during neurosurgery. Real-time blood flow visualization during surgery could help neurosurgeons better understand the consequences of vascular occlusion events during surgery, recognize potential adverse complications, and thus prompt timely intervention to reduce the risk of stroke. The current standard for visualizing cerebral blood flow during surgery is indocyanine green angiography (ICGA), which involves administering a bolus of fluorescent dye intravenously and imaging the wash-in of the dye to determine which vessels are perfused. Unfortunately, ICGA can only be used a few times during a surgery due to the need to inject a fluorescent dye, and provides only an instantaneous view of perfusion rather than a continuous view. Laser speckle contrast imaging does not require any dyes or tissue contact and has the potential to provide complementary information to ICGA. In this study we plant to collect blood flow images with laser speckle contrast imaging and to compare the images with ICGA that is performed as part of routine care during neurovascular surgical procedures such as aneurysm clipping.

NCT ID: NCT04772963 Recruiting - Clinical trials for Arteriovenous Malformations

Genetics of Central Nervous System Arteriovenous Malformations (GENE-MAV)

GENE-MAV
Start date: February 17, 2022
Phase:
Study type: Observational

Cerebral and medullary arteriovenous malformations (AVMs) are morphologically abnormal vessels located on the surface or in the cerebral or medullary parenchyma. These vascular lesions cause the arterial and venous networks to communicate pathologically, creating an arteriovenous shunt.The prevalence of cerebral Cerebral and medullary AVMs in general population is difficult to establish given the rarity of the condition. However, it is estimated at around 1 per 10,000 inhabitants (0.01%). About 15-20% of the cerebral vascular accidents are asymptomatic at the time of diagnosis. The occurrence of intracranial haemorrhage is the most important prognostic factor because it is associated with a significant morbidity and mortality. The management of an AVM is usually carried out in a multidisciplinary way, combining interventional neuroradiology, neurosurgery and vascular neurology. The genetic, molecular and cellular mechanisms that cause vascular malformations of the central nervous system are partially known. Several recent research works highlight mutations in the RAS-MAPK or MAPK-ERK signalling pathway in AVMs. In cases of cerebral AVMs considered to be sporadic, a somatic KRAS/BRAF mutation has recently been demonstrated in tissue samples of operated AVMs. Except in the case of Hereditary Haemorrhagic Telangiectasia (HHT or Rendu-Osler-Weber syndrome), the influence of genetic damage on the prognosis of AVM is poorly known. It is also interesting to note that genetic screening is not routinely performed in patients with cerebro-medullary AVMs and that therefore the prevalence of these clinical entities in patients with AVMs is not known.

NCT ID: NCT04593966 Recruiting - Clinical trials for Cerebral Arteriovenous Malformation

Pediatric and Adult Cerebral Arteriovenous Malformation Neurofunctional Outcomes

DOPA
Start date: April 1, 2012
Phase:
Study type: Observational

Cerebral Arteriovenous malformations (AVMs) are abnormal tangles which are usually believed congenital. AVM can cause different symptoms depending on where it is located, but the most common symptoms are intracranial hemorrhage and seizure. Outcomes of AVM patients can be very different due to factors like the location of lesion, age, sex etc. Generally, more early the intervention was taken, the risk of adverse events would be lower. But the selection of surgical timing for pediatric AVM patients is hard to judge, due to children's cerebral vessels angioarchitecture can be still developing with their age. Some previous studies indicated that there is no difference in intervention outcomes between pediatric and adult AVM patients, so pediatric patients should undergo more aggressive intervention. DOPA study aims to compare the clinical intervention outcomes of both pediatric and adult patients with eloquent region cerebral arteriovenous malformations, helping to determine the treatment strategy.

NCT ID: NCT04572568 Recruiting - Clinical trials for Brain Arteriovenous Malformation

Registry of Multimodality Treatment for Brain Arteriovenous Malformation in Mainland China

MATCH
Start date: August 1, 2011
Phase:
Study type: Observational [Patient Registry]

This study is a multi-center, prospective, registry study. This research was supported by the National Key Research and Development Program. They were divided into experimental group and control group according to whether the treatment plan was formulated by a multidisciplinary team. Patients of experimental group is strictly in accordance with standardized multi-disciplinary treatment protocols and meet the following criteria: 1. A multi-disciplinary conference discussion; 2. Detailed preoperative evaluation based on CT, MRI, fMRI and DSA. 3. Treatment modalities meet the following treatment criteria(craniotomy, embolization and stereotactic radiosurgery). The control group was patients who had not been treated according to a multi-disciplinary treatment protocol. Patient baseline data, AVM angioarchitectural features, imaging DICOM data, surgical information, and follow-up information were registered. All patients were evaluated for neurofunction at baseline, 3 months, 12 months, and 3 years after treatment. Main observation endpoints: 1. Modified Rankin Scale; 2. Obliteration rate; 3. Subsequent hemorrhage; 4. Complication rate (such as morbidity rate, new-onset neurological dysfunction, and radiation-related complications). Secondary observation endpoint: improvement of clinical symptoms (epilepsy, headache, neurological dysfunction) at 3 months, 12 months, and 3 years after treatment.