Clinical Trials Logo

Clinical Trial Summary

The concept of Ventilator-induced Lung Injury Vortex (VILI vortex) has recently been proposed as a progressive lung injury mechanism in which the alveolar stress/strain increases as the ventilable lung "shrinks" (1). This positive feedback inexorably leads to the acceleration of lung damage, with potentially irreversible results. Little is known about the clinical aspects of this condition. Understanding its behavior could contribute to changing its potential devastating impact. The objective of this study is to evaluate the incidence of VILI vortex in patients with acute respiratory syndrome (ARDS) secondary to COVID-19, to establish a connection between this phenomenon and mortality, and to identify the factors that have an impact on its development.


Clinical Trial Description

Mechanical ventilation is an essential tool for the treatment of patients with acute respiratory distress syndrome (ARDS). However, as with other strategies, it is not free of complications. Inadequate ventilation may have a negative impact on pulmonary and systemic hemodynamics, and it could both cause structural damage to pulmonary parenchyma and activate inflammation (2). This process is known as ventilator-induced lung injury (VILI) and may promote the development of multiple organ failure and, eventually, death. VILI results from the interaction between the mechanical load applied to the ventilable lung and its capacity to tolerate it. Factors such as tidal volume (Vt), driving pressure (ΔP), inspiratory flow rate (VI), respiratory rate (RR), excessive inspiratory effort, high levels of FiO2 and, in some cases, PEEP, have been involved in damage mechanism. In that sense, the concept of mechanical power (MP) tries to encompass most of these factors within a measurable unit (3). Furthermore, the decrease in ventilable lung volume (baby lung concept), the heterogeneous lung compromise in ARDS), and the presence of cofactors that have a negative impact on the lung (fluid overload, presence of sepsis or shock) could increase its susceptibility to damage (4-5). Due to the fact that the mechanical conditions of the lung change dynamically with the progression of the disease, the ventilatory strategy needs constant adjustments in order to maintain a balance between the load and the size of the ventilable lung (concept of ergonomic ventilation). In fact, a protective ventilatory strategy of low tidal volume (Vt: 6 ml/kg/PBW) and limited plateau pressure (PPlat <30 cmH2O) may cause damage if the functional residual capacity (FRC) decreases significantly, thus making a lower number of alveoli (including capillaries) withstand a higher mechanical load per unit. The concept of VILI vortex has recently been proposed as a progressive lung injury mechanism in which the alveolar stress/strain increases as the ventilable lung "shrinks". This positive feedback inexorably leads to the acceleration of lung damage, with potentially irreversible results (1). Little is known about the clinical aspects of this condition. Understanding its behavior could contribute to changing its potential devastating impact. The objective of this study is to evaluate the incidence of VILI vortex in patients with ARDS secondary to COVID-19, to establish a connection between this phenomenon and mortality, and to identify the factors that have an impact on its development. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04174313
Study type Observational
Source Hospital El Cruce
Contact
Status Completed
Phase
Start date March 10, 2020
Completion date June 9, 2021

See also
  Status Clinical Trial Phase
Completed NCT04435613 - Clinical and Physiological Assessment of a Nearly Ultra-protective Lung Ventilation Strategy: A Quasi-experimental Preliminary Study in ARDS Patients N/A
Enrolling by invitation NCT05020210 - Effect of Early Treatment With Sivelestat Sodium in ARDS Patients
Completed NCT04468971 - REgulatory T Cell infuSion fOr Lung Injury Due to COVID-19 PnEumonia Phase 1
Completed NCT04505592 - Tenecteplase in Patients With COVID-19 Phase 2
Completed NCT04493242 - Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Completed NCT02265198 - Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome N/A
Completed NCT01949272 - Optimization of PEEP for Alveolar Recruitment in ARDS N/A
Not yet recruiting NCT01668368 - Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance N/A
Completed NCT01881061 - Lung Sonography in Patients With Acute Respiratory Distress Syndrome in Intensive Care Unit N/A
Completed NCT00808691 - Microcirculation and Oxidative Stress in Critical Ill Patients in Surgical Intensive Care Unit N/A
Completed NCT05035589 - The Effect of Tocilizumab on Procalcitonin and Other Biochemical and Clinical Markers in the Setting of COVID-19 Pneumonia
Recruiting NCT04764032 - Right Ventricular Dysfunction in Ventilated Patients With COVID-19
Completed NCT04556513 - Functional Recovery From Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19: Influence of Socio-Economic Status
Recruiting NCT06036056 - NMR Based Metabolomics Kinetics in ARDS Patients
Recruiting NCT04503876 - Effects of End-expiratory Positive Pressure Optimization in Intubated Patients With Healthy Lung or Acute Respiratory Distress Syndrome N/A
Recruiting NCT04643691 - Losartan and Spironolactone Treatment for ICU Patients With COVID-19 Suffering From ARDS Phase 2
Completed NCT04395911 - Safety and Efficacy of SCD in AKI or ARDS Patients Associated With COVID-19 Infections N/A
Not yet recruiting NCT05341687 - Prognostic Value of Respiratory System Compliance Under VV-ECMO on 180-day Mortality in COVID-19 ARDS.
Recruiting NCT05056090 - Effect of Prone Positioning on Mortality in Patients With Mild to Moderate Acute Respiratory Distress Syndrome. N/A