Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT02833493
Other study ID # CICL670AAU05
Secondary ID
Status Not yet recruiting
Phase N/A
First received July 5, 2016
Last updated July 13, 2016
Start date September 2016
Est. completion date October 2019

Study information

Verified date July 2016
Source Peking Union Medical College Hospital
Contact n/a
Is FDA regulated No
Health authority China: Food and Drug Administration
Study type Observational

Clinical Trial Summary

The investigators aim to give an overview of Iron overload(IOL) of patients with AA and low and int-1 risk MDS and their sequelae under different chelation treatment. And the investigators also aim to evaluate the relationship of LIC and T2*/R2*.


Description:

Long-term transfusion therapy, a supporting treatment for patients with intractable chronic anemia is currently the most frequent cause of secondary iron overload. Both Aplastic anemia (AA) and low risk (low and intermediate-1 risk) myelodysplastic syndromes (MDS) are classified into bone marrow failure syndromes (BMFs) as they have a lot of characters in common. Iron overload (IOL) can then become a significant problem in regularly transfused patients, leading to organ damage, particularly in the liver and heart. Iron overload also has a suppressive effect on erythroid progenitors and may increase transfusion requirements. In those cases, iron chelation therapy may help to improve their quality of life and prolong their survival.

Because of the importance of iron chelation in patients with AA and low and intermediate-1(int-1) risk MDS complicated with iron overload, it is necessary to monitor their iron overload status to find the suitable patients to be chelated and follow up the effectiveness of therapy. Using quantitative Magnetic resonance imaging (MRI) T2* to detect the iron deposit of different organs has been introduce to China since 5 years ago. Compared to the traditional methods for evaluating iron overload like clinical manifestations, serum ferritin (SF) level, transferrin saturation (TS), CT and echocardiography (UCG) etc., which are widely used so far in China, MRI T2* provides an more accurate, convenient and affordable non-invasive way of monitoring iron overload. More important, it is very reliable to monitor the improvement of iron chelation therapy since the variation of MRI detection between different detections is very low. Few reports have been focused on IOL of MDS and AA in China so far.

Measurement of liver iron concentration (LIC) by MRI yields similar results to those coming from liver biopsy analysis, and is a validated tool for detection of iron overload. Data has been published from a multi-center trial evaluating the efficacy and safety of deferasirox (DFX) in low and intermediate-1 risk MDS patients with transfusion-dependent IOL and showed DFX yields sufficient reduction of excess iron indicated by serum ferritin levels and most importantly by liver MRI. But the median duration of DFX treatment is only 354 days and no data of Chinese patients was included. Most of the studies for MDS lack data of long term follow-up and there is scarcely any data on AA so far.

In China, more and more patients with iron overload can afford adequate iron chelation therapies, although there are still some patients who cannot afford at all or can only be chelated irregularly. And some patients can only accept deferoxamine instead of deferasirox because of the medical insurance policies. It is important to include patients with different situations and monitor their iron change in their major organs based on different chelation level.

In this study, it is anticipated to evaluate prospectively 80 patients with AA and low or int-1 risk MDS with IOL, by the traditional methods and MRI T2*. Clinical parameters and T2*values will be monitored every 12 months for 3 years. Other parameters like clinical follow-ups ( rate of infection, liver disease, cardiac disorders, endocrine function and other co-morbidities associated with MDS/AAs, etc.), SF, liver and kidney function, UCG tests will be monitored as well at the interval of every 6 months. At the end of the study, patients will be classified as well chelated groups (defined as those received deferasirox 20mg/kg or deferoxamine 40 mg/kg for more than 255 days/year) or poor chelated groups (defined as those received iron chelation therapy dose less than above) and compared the differences of their outcome and change of iron status. The investigators aim to give an overview of IOL of patients with AA and low and int-1 risk MDS and their sequelae under different chelation treatment. And the investigators also aim to evaluate the relationship of LIC and T2*/R2*. It is the first and longest prospective clinical trial on AA and low risk MDS and will give us a better understanding of the value of proper chelation treatment for the organ function.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 80
Est. completion date October 2019
Est. primary completion date September 2019
Accepts healthy volunteers No
Gender Both
Age group 18 Years to 80 Years
Eligibility Inclusion Criteria:

1. Male or female of 18-80 year old.

2. With blood transfusion history or RBC-transfusion-dependence.

3. BM smear and biopsy plus chromosome analysis within 3 months before signing ICF, otherwise done during screening.

4. Excluding other diseases which might cause hematological abnormalities.

5. Serum ferritin level=500ng/ml with no sign of active infection or malignant disease.

6. Treatment with underlying disease is permitted for non-hematological and hematological conditions.

7. Previous iron chelation therapy like deferasirox or deferoxamine is permitted.

8. ECOG performance score =2

9. All subjects must: agree not to donate blood or be counseled about pregnancy precautions and risks of fetal exposure.

10. Written informed consent.

Exclusion Criteria:

1. Patients who are under 18-year-old or over 80-year-old.

2. Prior history of other cancer unless cancer-free for =5 years.

Subjects with the following history/concurrent conditions may enroll at any time:

Basal cell carcinoma of the skin Squamous cell carcinoma of the skin Prostate cancer stage-1

3. Proved HIV-1 infection

4. Active HBV or active HCV infection.

5. Pregnant or lactating

6. Patients unwilling to or unable to comply with the protocol.

Study Design

Observational Model: Case-Only, Time Perspective: Prospective


Locations

Country Name City State
n/a

Sponsors (2)

Lead Sponsor Collaborator
Peking Union Medical College Hospital Novartis

Outcome

Type Measure Description Time frame Safety issue
Primary MRI T2*/R2* for liver and heart 3 years Yes
See also
  Status Clinical Trial Phase
Active, not recruiting NCT03025698 - A Phase II Dose-escalation Study Characterizing the PK of Eltrombopag in Pediatric Patients With Previously Untreated or Relapsed Severe Aplastic Anemia or Recurrent Aplastic Anemia Phase 2
Completed NCT00987480 - Hematopoietic Stem Cell Transplantation for the Treatment of Patients With Fanconi Anemia Lacking a Genotypically Identical Donor, Using a Chemotherapy Only Cytoreduction With Busulfan, Cyclophosphamide and Fludarabine Phase 2
Completed NCT00767650 - Neuropsychological Effects of Immunosuppressive Treatment in Subjects With Aplastic Anemia N/A
Completed NCT02833805 - NMA Haplo or MUD BMT for Newly Diagnosed Severe Aplastic Anemia Phase 2
Recruiting NCT02028416 - Comparison of Two Different Doses of Rabbit ATG-Fresenius With Cyclosporin in the Treatment of Acquired Aplastic Anaemia N/A
Completed NCT00004474 - Phase III Randomized Study of Cyclophosphamide With or Without Antithymocyte Globulin Before Bone Marrow Transplantation in Patients With Aplastic Anemia Phase 3
Recruiting NCT05031897 - Reduced-Intensity Conditioning for the Prevention of Treatment-Related Mortality in Patients Who Undergo a Hematopoietic Stem Cell Transplant Phase 2
Completed NCT04439006 - Ibrutinib for the Treatment of COVID-19 in Patients Requiring Hospitalization Phase 1
Not yet recruiting NCT05996393 - CsA+ATG+AVA vs. CsA+AVA for the Treatment of Newly-diagnosed SAA in the Elderly Phase 4
Completed NCT02462252 - Phase IIA Open Label Study to Evaluate Efficacy and Safety of BL-8040 Followed by (hATG), Cyclosporine and Methyprednisolone in Adult Subjects With Aplastic Anemia or Hypoplastic Myelodysplastic Syndrome Phase 2
Completed NCT01272817 - Nonmyeloablative Allogeneic Transplant N/A
Completed NCT00513175 - Non-Myeloablative Allogeneic Stem Cell Transplantation With Matched Unrelated Donors for Treatment of Hematologic Malignancies, Renal Cell Carcinoma, and Aplastic Anemia N/A
Completed NCT00001398 - Stem Cell Factor Medication for Aplastic Anemia Phase 1
Recruiting NCT01861093 - Safety Study of Cord Blood Units for Stem Cell Transplants Phase 2
Not yet recruiting NCT05018936 - Efficacy and Safety of Hetrombopag in Non-severe Aplastic Anemia Phase 2/Phase 3
Completed NCT00065260 - Rabbit Antithymocyte Globulin Versus Campath-1H for Treating Severe Aplastic Anemia Phase 2
Recruiting NCT02007811 - Open-label Clinical Trial to Investigate the Safety and Tolerability of Allogeneic B-cell Concentrates for Immune Reconstitution After Allogeneic Stem Cell Transplantation Measured as Response to a Antedated Single Vaccination Phase 1/Phase 2
Recruiting NCT01758042 - Bone Marrow and Kidney Transplant for Patients With Chronic Kidney Disease and Blood Disorders N/A
Terminated NCT01500161 - Pooled Unrelated Donor Umbilical Cord Blood Transplant For Hematologic Malignancy Needing Allogeneic Stem Cell Transplant Without Related HLA-Match Phase 2
Recruiting NCT00882323 - Reduced Toxicity Fludarabine (Flu) + Cyclophosphamide (CPM) + Rabbit Antithymocyte Globulin (rATG) Conditioning Regimen for Unrelated Donor Transplantation in Severe Aplastic Anemia (SAA) Phase 2