Clinical Trials Logo

Clinical Trial Summary

The pharmacokinetic profile of various drugs is altered in obese patients especially those administered by the intravenous route. Propofol is the commonly used intravenous anesthetic agent for induction and maintenance of anaesthesia as part of total intravenous anaesthesia (TIVA) regimen. A major concern with propofol dosing based on total body weight (TBW) in obese patients is disproportionate drug administration leading to undue drug accumulation in body with a potential to overdosing, delayed recovery from anaesthesia, and adverse hemodynamic outcome. Studies on propofol dosing based on various weight scalars have recommended that lean body weight (LBW) should be used for calculating bolus dose during anaesthesia induction and TBW or adjusted body weight (ABW) for arriving at an infusion dose required for maintenance of anesthesia. Although propofol delivery based on dose calculated by TBW has been well researched the evidence for propofol delivery based on dose calculated by ABW is lacking. Recent advance in the delivery of propofol has been the development of computer controlled anaesthesia delivery systems. These devices deliver propofol based on patient's frontal cortex electrical activity as determined by bispectral index (BIS). Evaluation of anaesthesia delivery by these systems has shown that they deliver propofol and maintain depth of anaesthesia with far more precision as compared to manual administration. One such indigenously developed computer controlled anaesthesia delivery system is the closed loop anesthesia delivery system (CLADS). CLADS functions on control of processed EEG response parameter captured from anesthetized patients with the help of a BIS- monitor, which is continuously fed into an automated drug infusion pump. The infusion pump then accordingly delivers the anesthetic drug to the patients based on pharmacodynamic requirements. The investigators plan to evaluate the propofol maintenance dose requirement based on TBW versus ABW using CLADS for propofol delivery.


Clinical Trial Description

Propofol is the most used intravenous agent for induction and maintenance of anaesthesia as part of total intravenous anaesthesia (TIVA) regimen. In the morbidly obese, various factors, such as, increased body fat content, lean body weight, cardiac output, total blood volume, and alterations in regional blood flow; which adversely/unpredictably affect the volume of distribution, clearance and elimination of intravenous anesthetic drugs, thereby making administration of TIVA difficult to control. A major concern with propofol dosing based on total body weight (TBW) in the obese patients is disproportionate drug administration leading to undue drug accumulation in body with potential overdosing, delayed recovery from anaesthesia, and adverse hemodynamic outcome. Studies on propofol dose regimen for TIVA recommended that LBW should be used for calculating bolus dose during induction of anaesthesia and TBW or ABW for arriving at a infusion dose required for maintenance of anaesthesia. Propofol requirement for induction of anaesthesia is based on LBW is especially relevant for the morbidly obese patients as because their surplus fat mass increases volume of distribution of propofol, which, in the face of decreased blood flow to adipose tissue; imposes the burden of potential drug accumulation. This may result in increased drug delivery to non-adipose tissue during induction of anaesthesia and possibly leading to undesirable rarefaction of depth-of-anaesthesia and attendant adverse haemodynamic effects. Conversely, during the maintenance phase of propofol TIVA, the volume of distribution and clearance of propofol increases and correlates linearly with TBW. In this respect, controlling propofol delivery in the morbidly obese with Eleveld allometric PK model, which utilizes TBW as weight parameter; has been found to be superior to other models that employs other weight dosing scalars. The use of ABW in Schnider and Marsh model takes into consideration drug distribution to lean tissues as well as a proportion to the body fat weight, thus accounting for lipid solubility dynamics of propofol. ABW is calculated by adding 40% excess fat weight (FW) to IBW. In obese patients propofol delivery using the Eleveld allometric PK model by incorporating TBW has been found to be superior to other models using other dosing scalars. Target-controlled infusion (TCI) forms the core of standard-of-care method used for administration of propofol TIVA. TCI system typically includes a microprocessor-controlled syringe pump that is designed to achieve a defined plasma concentration of the drug based on patient response and multi-compartment pharmacokinetic (PK) model. While TCI systems are designed to deliver propofol at a rate based on a predetermined plasma concentration, they do not take into consideration patient's pharmacodynamic profile. Hence, it is difficult to determine whether the target plasma concentration achieved has produced adequate anaesthesia depth. In the absence of reliable depth of anaesthesia monitors, during the maintenance phase of propofol TIVA, the desired plasma concentration achieved may either result in intraoperative awareness due to under-dosing or delayed recovery from anaesthesia because of over-dosing. Currently, an array of research on automated propofol delivery using computer-controlled closed loop anaesthesia delivery systems which deliver propofol based on patient's frontal cortex electrical activity as determined by bispectral index (BIS); have amply exhibited that these systems deliver propofol and maintain depth of anaesthesia with far more precision as compared to manual administration. Liu et al used a BIS-guided dual loop anaesthesia delivery system to determine requirement of propofol and remifenatnil in the obese versus lean patients. The propofol delivery was controlled by a closed loop set through TCI pump. Propofol was delivered with dose calculation by TBW and based on the Schnider model. The propofol dosage delivered as per TBW in real-time was analyzed post hoc on a IBW scale. The propofol requirements for induction and maintenance based on TBW was equivalent both in obese and lean patients. CLADS is a BIS-guided automated closed-loop anaesthesia delivery system developed by Puri, which delivers propofol using a non-TCI infusion pump. This system uses a control algorithm that is based on the relationship between diverse rates of propofol infusion and BIS variable. CLADS regulates the propofol infusion rate to maintain a predetermined BIS target (BIS=50) and is independent of plasma propofol concentration status. CLADS is uniquely versatile in that it can calculate propofol dosage delivered both on basis of TBW or IBW. Whereas, in a study comparing CLADS administered propofol versus desflurane-GA in morbid obese patients undergoing bariatric surgery (unpublished data) the propofol maintenance dosage based on ABW was 5.5 + 1.3 mg kg-1 h-1; Liu et al reported a median propofol consumption of 5.2 [4.1, 6] mg kg-1 h-1 with their dual-loop closed loop anaesthesia delivery system that also utilized TBW based administration of propofol and remifentanil. In both the study, BIS was used as an input control actuator to close the feedback loop joining the patient, the delivery system, and the infusion flow system. Although maintenance of propofol TIVA based on TBW is well established, the dosing schedule based on ABW is not well explored. Since the ABW takes into consideration a certain percentage of FW in addition to IBW and not the complete FW as in TBW, we hypothesize that propofol dosing using ABW will result in lower propofol requirement as compared to TBW for maintaining equivalent anesthetic depth. Since CLADS gives an objective assessment of propofol dose delivered and anaesthesia depth consistency, this randomized study aim to compare the maintenance requirements of propofol in obese patients given propofol dosing based on TBW versus ABW ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05305313
Study type Interventional
Source Sir Ganga Ram Hospital
Contact Nitin Sethi, DNB
Phone +919717494498
Email nitinsethi77@yahoo.co.in
Status Recruiting
Phase Phase 4
Start date April 19, 2022
Completion date November 10, 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04580030 - Tricuapid Annular Plane Sistolic Excursion Before General Anesthesia Can Predict Hypotension After Induction
Active, not recruiting NCT04279054 - Decreased Neuraxial Morphine After Cesarean Delivery Early Phase 1
Completed NCT03640442 - Modified Ramped Position for Intubation of Obese Females. N/A
Recruiting NCT04099693 - A Prospective Randomized Study of General Anesthesia Versus Anesthetist Administered Sedation for ERCP
Terminated NCT02481999 - Pre- and Postoperative EEG-Monitoring for Children Aged From 0,5 to 8 Years
Completed NCT04235894 - An Observer Rating Scale of Facial Expression Can Predict Dreaming in Propofol Anesthesia
Recruiting NCT05525104 - The Effect of DSA on Recovery of Anaesthesia in Children (Het Effect Van DSA op Het Herstel na Anesthesie Bij Kinderen). N/A
Recruiting NCT05024084 - Desflurane and Sevoflurane Minimal Flow Anesthesia on Recovery and Anesthetic Depth Phase 4
Completed NCT04204785 - Noise in the OR at Induction: Patient and Anesthesiologists Perceptions N/A
Completed NCT03277872 - NoL, HR and MABP Responses to Tracheal Intubation Performed With MAC Blade Versus Glidescope N/A
Terminated NCT03940651 - Cardiac and Renal Biomarkers in Arthroplasty Surgery Phase 4
Terminated NCT02529696 - Measuring Sedation in the Intensive Care Unit Using Wireless Accelerometers
Completed NCT05346588 - THRIVE Feasibility Trial Phase 3
Terminated NCT03704285 - Development of pk/pd Model of Propofol in Patients With Severe Burns
Recruiting NCT05259787 - EP Intravenous Anesthesia in Hysteroscopy Phase 4
Completed NCT02894996 - Does the Response to a Mini-fluid Challenge of 3ml/kg in 2 Minutes Predict Fluid Responsiveness for Pediatric Patient? N/A
Completed NCT05386082 - Anesthesia Core Quality Metrics Consensus Delphi Study
Terminated NCT03567928 - Laryngeal Mask in Upper Gastrointestinal Procedures N/A
Recruiting NCT06074471 - Motor Sparing Supraclavicular Block N/A
Completed NCT04163848 - CARbon Impact of aNesthesic Gas