Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT03381781
Other study ID # RuijinH mutant p53 AML
Secondary ID
Status Not yet recruiting
Phase Phase 2
First received November 21, 2017
Last updated January 2, 2018
Start date March 2018
Est. completion date November 2020

Study information

Verified date January 2018
Source Ruijin Hospital
Contact Li Junmin, MD
Phone 0086-21-64370045
Email drlijunmin@126.com
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This is a prospective,uncontrolled and multi-institution trial.The aim is to identify if using decitabine,cytarabine and ATO as the therapy of acute myeloid leukemia(AML) with p53 mutations has better relapse free survival and complete response than using decitabine and cytarabine.

TP53 mutation is commonly associated with poor cancer patient prognosis yet no mutant p53 (mp53)-targeting regimen was clinically established. Particularly, p53 mutation is associated with extremely poor prognosis in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients.

Decitabine (DAC) is a FDA approved drug for MDS treatment. In two independent clinical trials reported recently, DNA demethylating drug DAC treatment yielded a surprisingly high rate of complete remission (CR) in mp53-harboring AML/MDS patients (Welch, NEJM, 2016; Chang, BJH, 2017). Notably, all of the mp53-expressing patients in the two clinical studies relapsed quickly.

Arsenic trioxide (ATO) is a FDA approved drug for M3-AML treatment. Despite of the observed efficacy in treating non-APL patients, ATO is not yet approved for non-APL cancer treatment. ATO plays key role in regulating both wild-type p53 (wtp53) and mp53. Our published and unpublished data suggest ATO potentially hijacks nuclear iASPP-mediated STRaND pathway via exposing iASPP's RaDAR nuclear import code (Lu, Cancer Cell, 2013; Lu, Cell, 2014; Lu, Nat Rev Mol Cell Biol, 2016; Lu, unpublished). Our unpublished data also suggests a key role of ATO in regulating mp53 (Lu, The 17th International p53 Workshop, 2017). ATO is widely reported to be able to degrade and thus inhibit mp53's oncogenic function (Hamadeh, BBRC, 1999)(Liu, Blood, 2003). ATO suppressed cancer cell growth by targeting mp53 for degradation by Pirh2 degradation pathway (Yang, JBC, 2011; Yan, PLOS one, 2014);

Here we explore the potential of combination of DAC and ATO in improving the mp53-harboring AML/MDS patients' relapse free survival (RFS) and the ability to thoroughly eliminate mp53 subclone. Basic researches aiming to explore the mechanisms how mp53 cells responds to DAC and/or ATO treatment and how mp53 cells develop resistance to DAC and/or ATO will be coupled. We designate trials aiming for a better treatment regimen for mp53 patients as 'PANDA-Trials'.


Description:

This study is designed as a model of precision medicine. About 1500 AML patients will be applied for TP53 sequencing. The bone marrow samples will be collected and its p53 status will be Sanger sequenced in 3-5 days before drug administration. The 100 mp53-positive patients will be trialed, while the others (mp53-negative patients) will be subjected to standard treatment or other clinical trials.

In this study,100 patients with p53 mutations will be enrolled,including newly diagnosed AML aged 60-75,AML transferred from Myelodysplastic Syndrome(MDS) and therapy related AML.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 100
Est. completion date November 2020
Est. primary completion date November 2019
Accepts healthy volunteers No
Gender All
Age group 18 Years to 75 Years
Eligibility Inclusion Criteria:

- de novo elderly AML,AML transferred from MDS,therapy related AML

- exclude acute promyelocytic leukemia(APL)

- p53 mutations determined by DNA sequencing from bone marrow

- ECOG<3,CCI=1,ADL=100

- bone marrow is active

- normal hepatic function and renal function

- normal cardiac function

- obtain informed consent

Exclusion Criteria:

- APL

- without p53 mutations

- previously treated elderly AML

- central nervous system is involved

- abnormal hepatic function or renal function

- severe cardiac disease,including myocardial infarction,cardiac dysfunction

- ECG:QTc>0.44 sec in men,QTc>0.46 sec in women

- with other malignant tumor meanwhile

- active tuberculosis or HIV-positive patients

- woman who are pregnant or breastfeeding

- allergic to any drug in protocol or with contraindications

- hypomethylation agent(HMA) is contraindicated

- ECOG=3,CCI>1,ADL<100

- cannot understand or obey the protocol

- with a history of allergies or intolerability

- with a history of decitabine therapy

- participate in other clinical trials meanwhile

- any situations that hinder trial existed

Study Design


Intervention

Drug:
Decitabine
20mg/m^2,d1-5,ivgtt,28days as a duration
Arsenic Trioxide
0.16mg/kg,d1-5,ivgtt,28days as a duration
Cytarabine
15mg/m^2,hypodermic injection,q12h,d1-7

Locations

Country Name City State
China Ruijin Hospital Shanghai
China Ruijin Hospital North Shanghai
China Shanghai Institute of Hematology Shanghai

Sponsors (1)

Lead Sponsor Collaborator
Li Junmin

Country where clinical trial is conducted

China, 

References & Publications (6)

Chang CK, Zhao YS, Xu F, Guo J, Zhang Z, He Q, Wu D, Wu LY, Su JY, Song LX, Xiao C, Li X. TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes. Br J Haematol. 2017 Feb;176(4):600-608. doi: 10.1111/bjh.14455. Epub 2016 Dec 16. — View Citation

Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, Ratnayaka I, Sullivan A, Brown NR, Endicott J, Knapp S, Kessler BM, Middleton MR, Siebold C, Jones EY, Sviderskaya EV, Cebon J, John T, Caballero OL, Goding CR, Lu X. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell. 2013 May 13;23(5):618-33. doi: 10.1016/j.ccr.2013.03.013. Epub 2013 Apr 25. Erratum in: Cancer Cell. 2016 Nov 14;30(5):822-823. — View Citation

Lu M, Muers MR, Lu X. Introducing STRaNDs: shuttling transcriptional regulators that are non-DNA binding. Nat Rev Mol Cell Biol. 2016 Aug;17(8):523-32. doi: 10.1038/nrm.2016.41. Epub 2016 May 25. Review. — View Citation

Lu M, Zak J, Chen S, Sanchez-Pulido L, Severson DT, Endicott J, Ponting CP, Schofield CJ, Lu X. A code for RanGDP binding in ankyrin repeats defines a nuclear import pathway. Cell. 2014 May 22;157(5):1130-45. doi: 10.1016/j.cell.2014.05.006. — View Citation

Welch JS, Petti AA, Miller CA, Fronick CC, O'Laughlin M, Fulton RS, Wilson RK, Baty JD, Duncavage EJ, Tandon B, Lee YS, Wartman LD, Uy GL, Ghobadi A, Tomasson MH, Pusic I, Romee R, Fehniger TA, Stockerl-Goldstein KE, Vij R, Oh ST, Abboud CN, Cashen AF, Schroeder MA, Jacoby MA, Heath SE, Luber K, Janke MR, Hantel A, Khan N, Sukhanova MJ, Knoebel RW, Stock W, Graubert TA, Walter MJ, Westervelt P, Link DC, DiPersio JF, Ley TJ. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016 Nov 24;375(21):2023-2036. doi: 10.1056/NEJMoa1605949. — View Citation

Yan W, Jung YS, Zhang Y, Chen X. Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase. PLoS One. 2014 Aug 12;9(8):e103497. doi: 10.1371/journal.pone.0103497. eCollection 2014. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary relapse free survival since a patient first being determined as complete release until relapse From date of complete release until the date of first documented relapse, assessed up to 6-8months
Secondary complete release the percent of patients with complete release in all patients enrolled 2-4 months since the first cycle of treatment
Secondary overall survival from first diagnosed to death whichever the cause is primary estimated for 1year
See also
  Status Clinical Trial Phase
Recruiting NCT05400122 - Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer Phase 1
Recruiting NCT04460235 - Immunogenicity of an Anti-pneumococcal Combined Vaccination in Acute Leukemia or Lymphoma Phase 4
Completed NCT03678493 - A Study of FMT in Patients With AML Allo HSCT in Recipients Phase 2
Completed NCT04022785 - PLX51107 and Azacitidine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Phase 1
Recruiting NCT05424562 - A Study to Assess Change in Disease State in Adult Participants With Acute Myeloid Leukemia (AML) Ineligible for Intensive Chemotherapy Receiving Oral Venetoclax Tablets in Canada
Completed NCT03197714 - Clinical Trial of OPB-111077 in Patients With Relapsed or Refractory Acute Myeloid Leukaemia Phase 1
Terminated NCT03224819 - Study of Emerfetamab (AMG 673) in Adults With Relapsed/Refractory Acute Myeloid Leukemia (AML) Early Phase 1
Active, not recruiting NCT03844048 - An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial Phase 3
Active, not recruiting NCT04070768 - Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients With Relapsed or Refractory CD33+ Acute Myeloid Leukemia:Big Ten Cancer Research Consortium BTCRC-AML17-113 Phase 1
Active, not recruiting NCT04107727 - Trial to Compare Efficacy and Safety of Chemotherapy/Quizartinib vs Chemotherapy/Placebo in Adults FMS-like Tyrosine Kinase 3 (FLT3) Wild-type Acute Myeloid Leukemia (AML) Phase 2
Recruiting NCT04385290 - Combination of Midostaurin and Gemtuzumab Ozogamicin in First-line Standard Therapy for Acute Myeloid Leukemia (MOSAIC) Phase 1/Phase 2
Recruiting NCT04920500 - Bioequivalence of Daunorubicin Cytarabine Liposomes in Naive AML Patients N/A
Recruiting NCT03897127 - Study of Standard Intensive Chemotherapy Versus Intensive Chemotherapy With CPX-351 in Adult Patients With Newly Diagnosed AML and Intermediate- or Adverse Genetics Phase 3
Active, not recruiting NCT04021368 - RVU120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome Phase 1
Recruiting NCT03665480 - The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML Phase 2/Phase 3
Completed NCT02485535 - Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant Phase 1
Enrolling by invitation NCT04093570 - A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers Phase 2
Recruiting NCT04069208 - IA14 Induction in Young Acute Myeloid Leukemia Phase 2
Recruiting NCT05744739 - Tomivosertib in Relapsed or Refractory Acute Myeloid Leukemia (AML) Phase 1
Recruiting NCT04969601 - Anti-Covid-19 Vaccine in Children With Acute Leukemia and Their Siblings Phase 1/Phase 2