Acute Myeloid Leukemia Clinical Trial
In malignant or neoplastic disease, angiogenesis is defined as the generation of new capillaries from preexisting blood vessels, e.g. by sprouting or by intusseption. Through the pioneering work of Folkman, it was recognized that angiogenesis plays an important role in tumor development, progression, and metastasis. It is also conceivable that there are forms or developmental stages of leukemia, multiple myeloma, or lymphomas that will progress independently of angiogenesis. Synthesis of angiogenesis activators, such as vascular endothelial growth factor (VEGF) and other angiogenic factors, such as basic fibroblast growth factor (bFGF), has been demonstrated for leukemia cells, non-Hodgkin’s lymphoma, and myeloma cells. Microvessel density is also significantly elevated over normal controls with progressive increases according to the stages of myelodysplastic syndrome. Increased microvessel density (MVD) in the bone marrow was found in patients with multiple myeloma in comparison to normal controls and increased MVD is an adverse prognostic marker in multiple myeloma. However, the functional status of the blood vessel (e.g. permeability) cannot be determined by the above mentioned methods.
In malignant or neoplastic disease, angiogenesis is defined as the generation of new capillaries from preexisting blood vessels, e.g. by sprouting or by intusseption. Through the pioneering work of Folkman, it was recognized that angiogenesis plays an important role in tumor development, progression, and metastasis. It is also conceivable that there are forms or developmental stages of leukemia, multiple myeloma, or lymphomas that will progress independently of angiogenesis. Synthesis of angiogenesis activators, such as vascular endothelial growth factor (VEGF) and other angiogenic factors, such as basic fibroblast growth factor (bFGF), has been demonstrated for leukemia cells, non-Hodgkin’s lymphoma, and myeloma cells. Microvessel density is also significantly elevated over normal controls with progressive increases according to the stages of myelodysplastic syndrome. Increased microvessel density (MVD) in the bone marrow was found in patients with multiple myeloma in comparison to normal controls and increased MVD is an adverse prognostic marker in multiple myeloma. However, the functional status of the blood vessel (e.g. permeability) cannot be determined by the above mentioned methods. ;
Observational Model: Defined Population, Time Perspective: Cross-Sectional
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05400122 -
Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer
|
Phase 1 | |
Recruiting |
NCT04460235 -
Immunogenicity of an Anti-pneumococcal Combined Vaccination in Acute Leukemia or Lymphoma
|
Phase 4 | |
Completed |
NCT03678493 -
A Study of FMT in Patients With AML Allo HSCT in Recipients
|
Phase 2 | |
Completed |
NCT04022785 -
PLX51107 and Azacitidine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome
|
Phase 1 | |
Recruiting |
NCT05424562 -
A Study to Assess Change in Disease State in Adult Participants With Acute Myeloid Leukemia (AML) Ineligible for Intensive Chemotherapy Receiving Oral Venetoclax Tablets in Canada
|
||
Terminated |
NCT03224819 -
Study of Emerfetamab (AMG 673) in Adults With Relapsed/Refractory Acute Myeloid Leukemia (AML)
|
Early Phase 1 | |
Completed |
NCT03197714 -
Clinical Trial of OPB-111077 in Patients With Relapsed or Refractory Acute Myeloid Leukaemia
|
Phase 1 | |
Active, not recruiting |
NCT04070768 -
Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients With Relapsed or Refractory CD33+ Acute Myeloid Leukemia:Big Ten Cancer Research Consortium BTCRC-AML17-113
|
Phase 1 | |
Active, not recruiting |
NCT03844048 -
An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial
|
Phase 3 | |
Active, not recruiting |
NCT04107727 -
Trial to Compare Efficacy and Safety of Chemotherapy/Quizartinib vs Chemotherapy/Placebo in Adults FMS-like Tyrosine Kinase 3 (FLT3) Wild-type Acute Myeloid Leukemia (AML)
|
Phase 2 | |
Recruiting |
NCT04385290 -
Combination of Midostaurin and Gemtuzumab Ozogamicin in First-line Standard Therapy for Acute Myeloid Leukemia (MOSAIC)
|
Phase 1/Phase 2 | |
Recruiting |
NCT04920500 -
Bioequivalence of Daunorubicin Cytarabine Liposomes in Naive AML Patients
|
N/A | |
Recruiting |
NCT03897127 -
Study of Standard Intensive Chemotherapy Versus Intensive Chemotherapy With CPX-351 in Adult Patients With Newly Diagnosed AML and Intermediate- or Adverse Genetics
|
Phase 3 | |
Active, not recruiting |
NCT04021368 -
RVU120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome
|
Phase 1 | |
Recruiting |
NCT03665480 -
The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML
|
Phase 2/Phase 3 | |
Completed |
NCT02485535 -
Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant
|
Phase 1 | |
Enrolling by invitation |
NCT04093570 -
A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers
|
Phase 2 | |
Recruiting |
NCT04069208 -
IA14 Induction in Young Acute Myeloid Leukemia
|
Phase 2 | |
Recruiting |
NCT05744739 -
Tomivosertib in Relapsed or Refractory Acute Myeloid Leukemia (AML)
|
Phase 1 | |
Recruiting |
NCT04969601 -
Anti-Covid-19 Vaccine in Children With Acute Leukemia and Their Siblings
|
Phase 1/Phase 2 |