Clinical Trials Logo

Acute Megakaryoblastic Leukemia clinical trials

View clinical trials related to Acute Megakaryoblastic Leukemia.

Filter by:
  • None
  • Page 1

NCT ID: NCT04083170 Recruiting - Clinical trials for Acute Myeloid Leukemia

Cord Blood Transplant With Dilanubicel for the Treatment of HIV Positive Hematologic Cancers

Start date: October 6, 2022
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects of a cord blood transplant using dilanubicel and to see how well it works in treating patients with human immunodeficiency virus (HIV) positive hematologic (blood) cancers. After a cord blood transplant, the immune cells, including white blood cells, can take a while to recover, putting the patient at increased risk of infection. Dilanubicel consists of blood stem cells that help to produce mature blood cells, including immune cells. Drugs used in chemotherapy, such as fludarabine, cyclophosphamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Total body irradiation is a type of whole-body radiation. Giving chemotherapy and total-body irradiation before a cord blood transplant with dilanubicel may help to kill any cancer cells that are in the body and make room in the patient's bone marrow for new stem cells to grow and reduce the risk of infection.

NCT ID: NCT02530619 Active, not recruiting - Myelofibrosis Clinical Trials

Alisertib in Treating Patients With Myelofibrosis or Relapsed or Refractory Acute Megakaryoblastic Leukemia

Start date: October 9, 2015
Phase: N/A
Study type: Interventional

The purpose of this study is to evaluate the safety of alisertib and its effect, bad and/or good, on acute megakaryoblastic leukemia (AMKL) or myelofibrosis (MF). The study drug, alisertib, is an investigational drug. An investigational drug is one that has not been approved by the U.S. Food and Drug Administration (FDA). Alisertib has shown evidence in the lab that it may have an effect on a type of cell that produces platelets. This cell is called a megakaryocyte and it is known to be defective (doesn't work well) in both AMKL and MF.

NCT ID: NCT01823198 Completed - Clinical trials for Acute Myeloid Leukemia

Donor Natural Killer Cells and Donor Stem Cell Transplant in Treating Patients With High Risk Myeloid Malignancies

Start date: June 11, 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of donor natural killer cells when given together with donor stem cell transplant and to see how well they work in treating patients with myeloid malignancies that are likely to come back or spread. Giving chemotherapy, such as busulfan and fludarabine phosphate, before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT00392353 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

Start date: November 22, 2006
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of vorinostat and azacitidine and to see how well they work in treating patients with myelodysplastic syndromes or acute myeloid leukemia. Vorinostat may stop the growth of cancer or abnormal cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer or abnormal cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving vorinostat together with azacitidine may kill more cancer or abnormal cells.