View clinical trials related to X-ALD.
Filter by:This is a Phase 1/2 randomized, blinded, dose-escalation study to evaluate the safety and efficacy of intrathecal (IT) administration of SBT101, a recombinant adeno-associated virus serotype 9 (AAV9) containing a functional copy of the human adenosine triphosphate (ATP)-binding cassette transporter subfamily D member 1 (ABCD1; hABCD1) gene, in adult patients with adrenomyeloneuropathy (AMN) aged 18-65 years. Patients will receive a single dose of SBT101 via IT route (or an imitation procedure) and will be followed for safety and efficacy for 2 years. Patients receiving SBT101 will be followed for an additional 3 years (5 total) for Safety. Patients receiving an imitation procedure will be offered the opportunity to receive SBT101 after 2 years, as data indicate.
The course of AMN-related disabilities over time is poorly or incompletely understood due to a limited number of patients and lack of treatments. This study will help obtain a better understanding of the progression of disease with AMN and facilitate efficient clinical development of future interventional medications.
The incidence of rare diseases is extremely low, the disease is numerous, the symptoms are serious, and the detection technology is complicated. Countries have different definitions of rare diseases. The definition of rare diseases in China is defined as: diseases with a prevalence of less than 1 in 500 000 or newborns with an incidence of less than 1/10 000 are rare diseases. Due to the low incidence of rare diseases and the accumulation of multiple organs and systems in most diseases, clinicians lack comprehensive and systematic understanding. Patients often face great difficulties in seeking medical treatment and diagnosis. Currently, there is a lack of systematic and rare diseases in China. Management, diagnosis and treatment of rare diseases, making the diagnosis of rare diseases, prevention interventions seriously lagging behind, obviously behind the management of developed countries and regions; rare diseases are mostly related to genetic variation, with the clinical application of genetic diagnosis technology, more and more Many genetically related rare diseases have been diagnosed at an early stage; at present, precision medicine is rapidly developing, and more and more rare disease clinical trials have entered the country, bringing prospects for the treatment of rare diseases. For this reason, the management of rare diseases is particularly important. At present, some rare diseases of the nervous system can be treated early; for example, immune-related rare diseases have common normative immunotherapy and functional disability prevention, and the characteristics of single disease management of each disease; hereditary degenerative rare diseases such as progressive 2-3 multi-center clinical trials of spinal muscular atrophy and progressive muscular dystrophy have been entered into our hospital (in our hospital), X-linked pre-diagnosis of adrenal malnutrition genetic diseases, and appropriate treatment time is selected. Stem cell transplantation is in research and planning; the long-term management and comprehensive treatment of nodular sclerosis and Dravet syndrome are important for the prevention and treatment of diseases; therefore, the early diagnosis, pathogenesis and standardized treatment of rare diseases of the nervous system are urgent. And necessity.
The Myelin Disorders Biorepository Project (MDBP) seeks to collect and analyze clinical data and biological samples from leukodystrophy patients worldwide to support ongoing and future research projects. The MDBP is one of the world's largest leukodystrophy biorepositories, having enrolled nearly 2,000 affected individuals since it was launched over a decade ago. Researchers working in the biorepository hope to use these materials to uncover new genetic etiologies for various leukodystrophies, develop biomarkers for use in future clinical trials, and better understand the natural history of these disorders. The knowledge gained from these efforts may help improve the diagnostic tools and treatment options available to patients in the future.
Leukodystrophies, and other heritable disorders of the white matter of the brain, were previously resistant to genetic characterization, largely due to the extreme genetic heterogeneity of molecular causes. While recent work has demonstrated that whole genome sequencing (WGS), has the potential to dramatically increase diagnostic efficiency, significant questions remain around the impact on downstream clinical management approaches versus standard diagnostic approaches.