Clinical Trials Logo

Writer's Cramp clinical trials

View clinical trials related to Writer's Cramp.

Filter by:
  • None
  • Page 1

NCT ID: NCT04611009 Recruiting - Writer's Cramp Clinical Trials

Video-supervised Motor and Awareness Training in Writer's Cramp

Start date: June 26, 2020
Phase: Phase 2
Study type: Interventional

Writer's cramp is the most common task-specific dystonia. It is characterized by involuntary co-contraction of antagonistic muscles during writing. This disabling condition may force patients to give up their occupation. In this study the efficacy of a twelve months long-term training in patients with writer's cramp will be investigated. Two different programs will be offered: The first one will consist of a sensorimotor, the second one of an awareness training. All patients will benefit from video-based supervision with the aim to establish a practice-oriented therapeutic approach that will be available to all patients independently of their home location. The treatment effect will be measured primary with the patient-centered Canadian Occupational Performance Measure (COPM) and secondary with clinical scales to assess the clinical efficacy and everyday constraints. Writing will be assessed with a computer-based kinematic writing analysis. To evaluate the influence on the brain network, several functional magnetic resonance imaging (fMRI) evaluations will be performed. This project is of minimal risk without negative side effects from the training. The risks for the MRI experiment are equal to a non-contrast standard MRI investigation.

NCT ID: NCT03797638 Completed - Focal Dystonia Clinical Trials

Characterization of Manual Dexterity by Finger Force Manipuladum (FFM) in Patients With Writer's Cramp and in Control Subjects

FFM_CT
Start date: October 1, 2018
Phase: N/A
Study type: Interventional

Writer's cramp is a focal dystonia characterized by abnormal movements and postures during writing. Limited finger independence during writing manifests as difficulty suppressing unwanted activations of neighbouring non task-relevant fingers. Patients with Writer's cramp also have difficulty in fine control of grip force. The investigators have recently developed the Finger Force Manipulandum which quantifies the forces applied by each fingers in different tasks. This method is sensitive for detection and quantification of small unwanted contractions in non-active ('stationary') fingers. Different tasks have been developed to assess abilities such as finger individuation but also fine finger force control, finger movement regularity and speed. The aim of this study is to assess if developed tasks allow to precisely characterize writer's cramp condition in terms of abilities aforementioned. To do so, performance of 20 writer's cramp patients in the developed task will be compared with performance of 20 control participants (matched in age, sex and writing hand) in the same tasks.

NCT ID: NCT03085745 Recruiting - Writer's Cramp Clinical Trials

Sensorimotor Mapping in Patients With Writer's Cramp

IWCToxin
Start date: February 20, 2017
Phase: N/A
Study type: Interventional

Writer's cramp (WC) is a form of focal dystonia, a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both. It typically manifests while writing, making handwriting impossible in the most severe cases. Treatment can be difficult, but one effective and well-tolerated treatment consists in local muscle injections with botulinum toxin. Although clinical improvement seems to be related to focal muscle chemodenervation, central plasticity changes may occur. The main aim of the study is to characterize and quantify the changes in intrinsic hand muscle cortical representations at rest and during isometric contractions of the finger muscles before and after treatment with botulinum toxin and the changes in sensorimotor integration in patients with writer's cramp.

NCT ID: NCT03042962 Completed - Spasmodic Dysphonia Clinical Trials

Brain Networks in Dystonia

Start date: August 1, 2015
Phase:
Study type: Observational

Task-specific focal dystonias are characterized by selective activation of dystonic movements during performance of highly learned motor tasks, such as writing or playing a musical instrument. To date, there is only limited knowledge about the distinct neural abnormalities that lead to the development of task-specificity in focal dystonias, which affect similar muscle groups but result in different clinical manifestations, such as writer's cramp vs. pianist's dystonia or spasmodic dysphonia vs. singer's dystonia. Our goal is to dissect the pathophysiological mechanisms underlying the phenomenon of task specificity in isolated focal dystonias using multi-level brain network analysis in conjunction with neuropathological examination of postmortem brain tissue from patients with dystonia. Rather than viewing these disorders as interesting curiosities, understanding the biology of task-specific activation of motor programs is central to understanding dystonia.

NCT ID: NCT02504905 Completed - Healthy Volunteers Clinical Trials

Propensity to Develop Plasticity in the Parieto-Motor Networks in Dystonia From the Perspective of Abnormal High-Order Motor Processing

Start date: August 20, 2015
Phase: Early Phase 1
Study type: Interventional

Background: - People with dystonia have muscle contractions they can t control. These cause slow, repeated motions or abnormal postures. People with dystonia have abnormalities in certain parts of the brain. Researchers want to study the activity of two different brain areas in people with writer s cramp and cervical dystonia. Objective: - To compare brain activity in people with dystonia to that in healthy people. Eligibility: - Right-handed people ages of 18-65 with cervical dystonia or writer s cramp. - Healthy volunteers the same ages. Design: - Participants will be screened with a physical exam. They will answer questions about being right- or left-handed. - At study visit 1, participants will:<TAB> - Have a neurological exam. - Answer questions about how their disease impacts their daily activities. - Have a structural magnetic resonance imaging (MRI) scan. Participants will lie on a table that can slide <TAB>in and out of a metal cylinder. This is surrounded by a strong magnetic field. - Do 2 simple computer tasks. - At study visit 2: - Participants will have transcranial magnetic stimulations (TMS) at 2 places on the head. Two wire coils will be held on the scalp. A brief electrical current creates a magnetic pulse that affects brain activity. Muscles of the face, arm, or leg might twitch. Participants may have to tense certain muscles or do simple tasks during TMS. They may be asked to rate any discomfort caused by TMS. - Muscle activity in the right hand will be recorded by electrodes stuck to the skin of that hand.

NCT ID: NCT00579033 Recruiting - Focal Hand Dystonia Clinical Trials

Somatosensory Processing in Focal Hand Dystonia

Start date: May 2007
Phase: N/A
Study type: Interventional

Patients with focal dystonia experience uncontrollable movements of the hand during certain types of skilled movements. Though the origin of the disorder is not fully understood, it is thought that brain areas involved in moving the hands and receiving touch information from the hands, are involved. For example, patients with dystonia affecting the hand show changes in their ability to perceive touch - this is something that typically escapes the patients own awareness. Further, the area of the brain receiving touch information has a disrupted representation of the finger skin surfaces. The goal of our research is to improve dystonia symptoms in patients with hand dystonia. We will attempt to achieve this goal by implementing an intensive training treatment that requires patients to attend to, and use touch information applied to specific fingertips. Previous work has attempted to alter touch perception using sensory training and improvements in motor control (hand writing) of dystonia patients were observed. For example, learning to read Braille improves tactile perception and handwriting in focal hand dystonia. A different approach to treat focal hand dystonia involves a technique called repetitive transcranial magnetic stimulation (rTMS), and this can also temporarily improve hand writing in dystonia patients. The proposed research will attempt to alter touch processing using touch training alone, or in combination with rTMS. Rather than train using Braille reading, the sensory training will be applied using a systematic, experimenter controlled stimulus set that focuses on touch stimuli applied to individual digits. Importantly patients will have to associate certain types of touch information with rewards and other touch input with the lack of a reward. The study will first involve measuring the location and representation of the touch in the brain using multiple brain mapping tools. These tools include functional magnetic resonance imaging and magnetoencephalography; when both tools are used a very accurate picture of finger representation can be obtained, and we also know what brain areas respond to touch stimuli. Dystonia symptoms and touch perception will also be assessed. Next, patients will participate in a training intervention that involves 15 days(2.5 hr/day) of touch training applied to the fingertips of the dystonia affected hand. Patients will identify the touch targets amongst distractors and receive on-line performance feedback. The goal of the training is to provide the cortex with regular boundaries of fingers and in this way, attempt to re-shape the sensory cortex to accept these boundaries. Another group of patients will receive rTMS. The goal of the rTMS is to create an environment in sensory cortex that is open or 'ready' to accept changes induced by tactile stimulation. The rTMS will be immediately followed by the tactile training. A third group of patients will receive a placebo version of rTMS followed by tactile training. The latter group will allow us to understand if rTMS has a definite effect on the physiology of the patient. Following the 15-day training, we will assess the brains representation of fingertips, changes in dystonia symptoms and changes in the perception of touch stimuli. This research will advance the treatment of focal hand dystonia and assist the design of precise remediation training tailored to the dystonia patient.