Clinical Trials Logo

Wilms Tumor clinical trials

View clinical trials related to Wilms Tumor.

Filter by:

NCT ID: NCT03220035 Active, not recruiting - Soft Tissue Sarcoma Clinical Trials

Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 8, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213704 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)

Start date: August 23, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213678 Active, not recruiting - Malignant Glioma Clinical Trials

Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 28, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213665 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 13, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.

NCT ID: NCT03213652 Recruiting - Clinical trials for Malignant Solid Neoplasm

Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

Start date: April 17, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03210714 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)

Start date: June 5, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03155620 Recruiting - Malignant Glioma Clinical Trials

Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

Start date: July 31, 2017
Phase: Phase 2
Study type: Interventional

This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

NCT ID: NCT03050268 Recruiting - Pancreatic Cancer Clinical Trials

Familial Investigations of Childhood Cancer Predisposition

SJFAMILY
Start date: April 6, 2017
Phase:
Study type: Observational

NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: - Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: - Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.

NCT ID: NCT02982941 Completed - Neuroblastoma Clinical Trials

Enoblituzumab (MGA271) in Children With B7-H3-expressing Solid Tumors

Start date: December 2016
Phase: Phase 1
Study type: Interventional

This study is a Phase 1, open-label, dose escalation and cohort expansion trial designed to characterize the safety, tolerability, PK, PD, immunogenicity and preliminary antitumor activity of enoblituzumab administered IV on a weekly schedule for up to 96 doses (approximately 2 years) in children and young adults with B7-H3-expressing relapsed or refractory malignant solid tumors.

NCT ID: NCT02867592 Active, not recruiting - Clinical trials for Hepatocellular Carcinoma

Cabozantinib-S-Malate in Treating Younger Patients With Recurrent, Refractory, or Newly Diagnosed Sarcomas, Wilms Tumor, or Other Rare Tumors

Start date: May 18, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.