View clinical trials related to Williams Syndrome.
Filter by:The purpose of this study is to investigate the Psychiatric and Cognitive Phenotypes in Velocardiofacial Syndrome (VCFS), Williams Syndrome (WS)and Fragile X Syndrome Characterization, Treatment and Examining the Connection to Developmental and Molecular Factors
The Williams syndrome is a disease in which supravalvular aortic stenosis, an elfin facies, mental retardation and other congenital defects are sometimes associated with abnormal vitamin D and calcium metabolism. Whereas some patients have been reported to show increased sensitivity to vitamin D or an exaggerated response of serum 25-hydroxyvitamin D {25(OH)D} to administration of vitamin D and to have hypercalcemia caused by increased circulating 1,25-dihydroxyvitamin D{1,25(OH)2D} in infancy and early childhood, most patients have normal calcium metabolism and normal values for circulating 25(OH)D and 1,25(OH)2D. We propose to carry out further studies of vitamin D metabolism to elucidate the mechanism(s) for abnormal vitamin D metabolism. We will determine the response of serum 1,25(OH)2D to administration of 1,25(OH)2D3. Measurement of the 1,25(OH)2D in the patients compared to normal subjects will be the primary outcome.
OBJECTIVES: I. Investigate phenotype and genotype correlations in patients with Smith-Magenis syndrome (SMS) associated with del(17p11.2). II. Clinically evaluate SMS patients with unusual deletions or duplication of proximal 17p. III. Clinically evaluate patients with Williams syndrome with molecular characterization of 7q11.23. IV. Perform clinical studies of Prader-Willi, Angelman, DiGeorge, and Shprintzen syndrome patients with unique molecular findings in 15q11q13 or 22q11.2. V. Perform genotype and phenotype correlations in Prader-Willi patients, particularly those with loss of expression of only some of the imprinted transcripts in 15q11-q13. VI. Evaluate putative Angelman syndrome patients who do not have classic large deletion, uniparental disomy, or imprinting mutations, and perform molecular studies of the Angelman gene, UBE3A, and identify mutations of this gene. VII. Investigate phenotype and genotype correlations in patients with terminal deletions of chromosome 1p.