Clinical Trials Logo

Clinical Trial Summary

The objective of the study is to investigate whether thigh cuffs help to prevent and/or reduce the deconditioning induced by 5 days of dry immersion and in particular the fluid shift and its related ophthalmological disorders. During a randomized 5 day dry-immersion study in 20 healthy male adults the two following aims will be undertaken:

- Ten scientific protocols will assess the changes in the cerebral, ocular, cardiovascular, metabolism, cognitive, muscle and bone systems.

- In the above mentioned systems, the potential beneficial effects of the countermeasure protocol will also be investigated.


Clinical Trial Description

Space flights have shown the possibilities and limitations of human adaptation to space. For the last 50 years, results showed that the space environment and microgravity in particular, cause changes that may affect the performance of astronauts. These physiological changes are now better known: prolonged exposure to a weightlessness environment can lead to significant loss of bone, muscle mass, strength, cardiovascular and sensory-motor deconditioning, immune, hormonal and metabolism changes. Nevertheless, more recent missions have revealed a new suite of physiological adaptations and consequences of space flight. Indeed, astronauts exposed to prolonged weightlessness experience hyperopic shifts and structural alteration in the eye (e.g., choroidal folds and optic disc edema). This condition was defined by NASA as Spaceflight-Associated Neuro-ocular Syndrome (SANS). Some of these vision changes remain unresolved for years after flight. This phenomenon has most likely existed since the beginning of human space flight, but is just recently being recognized as a major consequence of adaptation to microgravity. Changes in vision and eye structure are thought to be the result of prolonged exposure to space flight-induced headward fluid shifts and elevated intracranial pressure. Loss of the hydrostatic pressure gradient during spaceflight leads to this redistribution of body fluids toward the head. To prepare for future manned missions beyond the low Earth Orbit, the mechanisms underlying SANS syndrome have to be investigated and countermeasures designed to reverse or prevent SANS are required. Venoconstrictive thigh cuffs (VTCs) represent one possible countermeasure to mitigate a headward fluid shift. The Russian Space Agency uses VTCs (bracelets) to sequester fluid in the lower limbs and mitigate the subjective sensation of head congestion during space-flight. Moreover, experiments on 6-month Mir missions demonstrated that bracelets reduced jugular vein cross-sectional area in cosmonauts by 12% to 20%. However, it is unknown how VTCs (including bracelets) affect ocular physiologic features. The space agencies are actively engaged in studying the initiation and progression of SANS syndrome through studies on the International Space Station and on the ground. Indeed, considering the limited number of flight opportunities, the difficulties related to the performance of in-flight experiments (operational constraints for astronauts, limited capabilities of in-flight biomedical devices), ground-based experiments simulating the effects of weightlessness are used to better understand the mechanisms of physiological adaptation, design and validate the countermeasures. Different methods are used to simulate microgravity on Earth. However, two separate approaches, -6° head-down bed rest (HDBR) and dry immersion (DI) have provided possibilities for long-term exposures with findings closest to those seen with a weightless state. They produce changes in body composition (including body fluid redistribution), cardiovascular and skeletal muscle characteristics that resemble the effects of microgravity. The common physiological denominator is the combination of a cephalad shift of body fluids and reduced physical activity. Unlike bed rest, dry immersion provides a unique opportunity to study the physiological effects of the lack of a supporting structure for the body. Dry immersion means immersing into the thermoneutral water covered with special elastic free floating waterproof fabric. The subject, surrounded by film and "free suspended" in the water mass, remains dry. During horizontal immersion, pressure forces are distributed nearly equally around the entire surface of the body (only the head and neck are not entirely supported by water). The absence of mechanical support of specific zones during immersion creates a state akin to weightlessness that is called "supportlessness". Physiological changes under DI develop more rapidly and are more profound than under HDBR. This advanced ground-based model is extremely suited to test countermeasures for microgravity-induced deconditioning and physical inactivity-related pathologies.

The present study is organized in this context by the French space agency (CNES) to assess on twenty healthy male volunteers the effects of thigh cuffs to prevent the deconditioning induced by 5 days of dry immersion and in particular the fluid shift and its related ophthalmological disorders. Using an integrated approach, the CNES has selected ten scientific protocols to assess the changes in the different physiological fields and the potential beneficial effects of the countermeasure to prevent and/or reduce these changes. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03915457
Study type Interventional
Source Centre National d'Etudes Spatiales
Contact
Status Completed
Phase N/A
Start date November 18, 2018
Completion date March 23, 2019

See also
  Status Clinical Trial Phase
Completed NCT03594799 - A New Nutritional Countermeasure to Prevent the Deconditioning Induced by 60 Days of Antiorthostatic Bed Rest N/A
Enrolling by invitation NCT03986788 - Cerebral Blood Flow Distribution During Parabolic Flight-induced Microgravity N/A
Completed NCT03195348 - The Effects of Whole Body Unloading on Physiological Function N/A
Recruiting NCT05496309 - Causes and Mechanisms of Space Hemolysis at High Altitudes
Completed NCT02300207 - Electroacupuncture is Effective in Cardiac Deconditioning Induced by Head-down Bed Rest N/A
Completed NCT00891449 - Space Flight Simulation to Study Effects of Micro-gravity Through Bed Rest N/A
Completed NCT05043974 - Integrative Study of Physiological Changes Induced by a 5-Day Dry Immersion on 20 Healthy Female Volunteers (DI5-Women) N/A
Completed NCT05493176 - A 5-day Dry Immersion Study on 20 Healthy Male Volunteers N/A