View clinical trials related to Waldenstrom Macroglobulinemia.
Filter by:This phase I trial is studying the side effects and best dose of SB-715992 in treating patients with metastatic or unresectable solid tumors or Hodgkin's or non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.
Biological therapies, such as MDX-010, work in different ways to stimulate the immune system and stop cancer cells from growing. This phase I/II trial is studying the side effects and best dose of MDX-010 and to see how well it works in treating patients with recurrent or refractory B-cell non-Hodgkin's lymphoma.
This phase II trial is studying how well giving rituximab together with combination chemotherapy and 90-Yttrium ibritumomab tiuxetan works in treating patients with stage I or stage II lymphoma. Drugs used in chemotherapy, such as prednisone, cyclophosphamide, doxorubicin, and vincristine, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as rituximab and yttrium 90-Yttrium ibritumomab tiuxetan can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells. Combining a monoclonal antibody with combination chemotherapy and a radiolabeled monoclonal antibody may kill more cancer cells.
RATIONALE: Monoclonal antibodies, such as rituximab, can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Combining rituximab with combination chemotherapy may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving rituximab together with combination chemotherapy works in treating patients with newly diagnosed Waldenstrom's macroglobulinemia.
RATIONALE: Monoclonal antibodies such as yttrium Y 90 ibritumomab tiuxetan and rituximab can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of yttrium Y 90 ibritumomab tiuxetan in treating patients who have Waldenstrom's macroglobulinemia.
Phase I/II trial to study the effectiveness of combining radiolabeled monoclonal antibody therapy and rituximab with and without filgrastim and interleukin-11 in treating patients who have relapsed or refractory non-Hodgkin's lymphoma. Radiolabeled monoclonal antibodies can locate cancer cells and deliver cancer-killing substances to them without harming normal cells. Biological therapies such as filgrastim and interleukin-11 use different ways to stimulate the immune system and stop cancer cells from growing.
Phase II trial to study the effectiveness of 506U78 in treating patients who have recurrent or refractory non-Hodgkin's lymphoma or T-cell lymphoma. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die
Phase II trial to study the effectiveness of arsenic trioxide in treating patients who have relapsed or refractory lymphoma or leukemia. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die