View clinical trials related to Waldenstrom Macroglobulinemia.
Filter by:RATIONALE: Everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Lenalidomide may stop the growth of cancer cells by blocking blood flow to the cancer. Giving everolimus together with lenalidomide may be an effective treatment for lymphoma. PURPOSE: This phase I/II trial is studying the side effects and best dose of giving everolimus and lenalidomide together and to see how well they work in treating patients with relapsed or refractory non-Hodgkin or Hodgkin lymphoma.
Rituximab is a monoclonal antibody with proven efficacy in WM but responses are slow. Bortezomib has shown significant and rapid activity in WM. Combinations of bortezomib with rituximab nad dexamethasone with rituximab have shown synergistic activity in laboratory studies and clinical trials. This is a Phase II multicenter study designed to evaluate the safety and efficacy of the combination of Bortezomib , Rituximab and dexamethasone (BDR). BDR will be administered in one 21-day treatment cycle followed by four 35-day treatment cycles to patients with WM. Bortezomib will be administered as an iv push over 3 to 5 seconds at a dose of 1.3mg/m2/day on days 1,4,8 and 11 of cycle 1. On cycles 2-5 bortezomib will be given at a dose of 1.6mg/m2/day on days 1,8,15 and 22 of each cycle. Only on cycles 2 and 5, following the administration of Bortezomib, dexamethasone 40mg iv and Rituximab 375 mg/m2 iv will be administered. A total of 8 infusions of rituximab will be administered. Subsequently patients rated as CR, PR, MR or SD will be followed without any treatment until there is evidence of progressive disease.
RATIONALE: Lenalidomide may stop the growth of cancer by blocking blood flow to the tumor. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with rituximab may be an effective treatment for B-cell non-Hodgkin lymphoma. PURPOSE: This phase I/II trial is studying the side effects and best dose of lenalidomide when given together with rituximab as maintenance therapy in treating patients with B-cell non-Hodgkin lymphoma.
This phase II trial is studying how well rituximab works in preventing acute graft-versus-host disease (GVHD) in patients undergoing a donor stem cell transplant for hematologic cancer. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving a monoclonal antibody, rituximab, together with anti-thymocyte globulin, tacrolimus, and mycophenolate mofetil before and after the transplant may stop this from happening
This phase II trial studies autologous peripheral blood stem cell transplant followed by donor bone marrow transplant in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia. Autologous stem cell transplantation uses the patient's stem cells and does not cause graft versus host disease (GVHD) and has a very low risk of death, while minimizing the number of cancer cells. Peripheral blood stem cell (PBSC) transplant uses stem cells from the patient or a donor and may be able to replace immune cells that were destroyed by chemotherapy. These donated stem cells may help destroy cancer cells. Bone marrow transplant known as a nonmyeloablative transplant uses stem cells from a haploidentical family donor. Autologous peripheral blood stem cell transplant followed by donor bone marrow transplant may work better in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia.
The purpose of this research study is to determine the safety of RAD001(Everolimus) and the highest dose of this drug that can be given to people safely. RAD001(Everolimus) is a drug that works by preventing cells in the body from growing and dividing. Information from basic and Phase I clinical research studies suggests that RAD001 also may help to prevent tumor growth in people with relapsed or refractory lymphoma.
The purpose of this research study is to assess the overall response rate of LBH589 in patients with relapsed or refractory Waldenstrom's Macroglobulinemia. LBH589 is a newly discovered compound that has killed Waldenstrom cells in laboratory studies, however, it is not known if LBH589 will show the same activity in people with Waldenstrom's Macroglobulinemia. This drug has been used in research for the treatment of other types of cancer, such as multiple myeloma.
Background: The development of new technologies now allow scientists to investigate the molecular basis and clinical manifestations of monoclonal B cell lymphocytosis (MBL), chronic lymphocytic leukemia(CLL)/small lymphocytic lymphoma (SLL), lymphoplasmacytic lymphoma (LPL)/Waldenstrom macroglobulinemia (WM), and splenic marginal zone lymphoma (SMZL). Applying these methods in a natural history study can clarify processes involved in disease progression and possibly lead to the discovery or validation of treatment targets. - Objectives: - Study the history of MBL/CLL/SLL/LPL/WM/SMZL in patients prior to and after treatment. - Characterize clinical, biologic and molecular events of disease stability and progression of patients enrolled on this protocol. - Eligibility: - Diagnosis of MBL/CLL/SLL/LPL/WM/SMZL - Age greater than or equal to 18 years. - Patients with CLL/SLL in remission after chemotherapy are excluded. - ECOG performance status of 0-2. - Design: - Patients are typically followed every 6 to 24 months in the clinic and have blood drawn. When required patients may undergo additional testing that may include bone marrow biopsy and aspiration, blood drawing, lymph node biopsy, x-ray studies, positron emission tomography and CT and MRI scans. Some of these tests may be required to monitor CLL/SLL, LPL/WM, and SMZL patients. Other tests, such as bone marrow biopsy and aspiration, lymph node biopsy, may not be clinically indicated, but patients may be asked to undergo these procedures for research purposes. - No treatment will be administered on this study. If a patients requires treatment for their cancer, available NIH clinical trials and alternative treatment options will be discussed with the patient.
RATIONALE: Collecting and storing samples of blood and bone marrow from patients with cancer to study in the laboratory may help doctors find better ways to ways to treat the cancer. PURPOSE: The purpose of this study is to collect and store blood and bone marrow samples from patients with multiple myeloma, smoldering myeloma, Waldenstrom's macroglobulinemia, amyloidosis, and monoclonal gammopathy of undetermined significance to be tested in the laboratory.
This phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.