View clinical trials related to Waldenstrom Macroglobulinemia.
Filter by:RATIONALE: Bortezomib may stop the growth of cancer by blocking the enzymes necessary for tumor cell growth. PURPOSE: Phase II trial to study the effectiveness of bortezomib in treating patients who have untreated or relapsed Waldenstrom's macroglobulinemia.
This phase II trial studies the side effects and the best dose of alemtuzumab when given together with fludarabine phosphate and low-dose total body irradiation (TBI) and how well it works before donor stem cell transplant in treating patients with hematological malignancies. Giving chemotherapy and low-dose TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Also, monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after transplant may stop this from happening.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
RATIONALE: Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy use different way to stop cancer cells from dividing so they stop growing or die. Combining monoclonal antibody therapy with chemotherapy may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of rituximab plus fludarabine in treating patients who have Waldenstrom's macroglobulinemia.
This phase I trial is studying how well monoclonal antibody therapy with peripheral stem cell transplant works in treating patients with non-Hodgkin's lymphoma. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Peripheral stem cell transplant may allow the doctor to give higher doses of monoclonal antibodies and kill more cancer cells
This clinical trial studies fludarabine phosphate and total-body radiation followed by donor peripheral blood stem cell transplant and immunosuppression in treating patients with hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with fludarabine phosphate, cyclosporine, and mycophenolate mofetil before transplant may stop this from happening.
Phase II trial to study the effectiveness of oxaliplatin in treating patients who have relapsed or refractory non-Hodgkin's lymphoma. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die
This clinical trial studies fludarabine phosphate, low-dose total-body irradiation, and donor stem cell transplant followed by cyclosporine, mycophenolate mofetil, and donor lymphocyte infusion in treating patients with hematopoietic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also keep the patient's immune response from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
This clinical trial studies fludarabine phosphate, low-dose total body irradiation, and donor stem cell transplant in treating patients with hematologic malignancies or kidney cancer. Giving chemotherapy drugs, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine before the transplant and cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
RATIONALE: Monoclonal antibodies such as rituximab can locate cancer cells and deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase II trial to study the effectiveness of rituximab in treating patients who have Waldenstrom's macroglobulinemia.