Vitamin A Deficiency Clinical Trial
Official title:
Determination of Relative Bioavailability, Bioconversion and Bioefficacy of β-cryptoxanthin in Comparison to β-carotene From Biofortified Maize and External Stable Isotopes Using Compartmental Modelling
Since no quantitative information currently exists on how effectively the pro-vitamin A carotenoid (pVAC) β-cryptoxanthin (βCX) is converted to vitamin A (VA) in humans, this proof of principle study aims to compare the efficacy of both βCX and β-carotene (βC) to yield VA from biofortified maize. This data is critical before the breeding strategy for biofortified maize is directed towards high βCX-containing varieties in order to reduce VA deficiency in low-income countries.
Despite advances in reducing vitamin A (VA) deficiency worldwide, the prevalence remains highest and unchanged in sub-Saharan Africa and South Asia. Efficacy studies have demonstrated that increasing provitamin A carotenoid (pVAC) intake through consuming pVAC biofortified crops results in increased circulating β-carotene (βC) and VA body stores. It has also been shown that consumption of biofortified maize improved VA total body stores (TBS) as effectively as preformed VA supplementation, and significantly improved visual function in marginally VA deficient children. Despite the fact that βC is the primary focus of breeding programs for pVAC biofortified maize, there is convincing evidence that comparable dietary intakes of βC and β-cryptoxanthin (βCX) would result in 7-fold greater concentrations of βCX in blood. The study is designed to determine for the first time the bioefficacy of βCX in comparison to βC in humans using state of the art isotope dilution techniques in combination with compartmental modelling. The project is conducted in two phases: Phase 1) the determination of best time points for assessment of βCX bioconversion, intestinal and postintestinal bioefficacy as well as quantifying TBS of VA in healthy volunteers; Phase 2) to test the bioefficacy of βCX and βC in maize by comparing a high βCX and low βC maize variety to a high βC and low βCX maize variety. Phase 1 of the study involves 1 long study day (D0), where 10 ml of blood will be taken every 2 hours, via cannulation, for a total of 12 hours (70 ml of blood total). Subsequently, there are 13 followup visits on the mornings of Days 1, 2, 4, 7, 11, 14, 21, 28, 35, 49, 63, 77, and 91 where one 10 ml blood sample is taken. Phase 2 of the study involves 2 whole days (D0 and D21) where approximately 10 ml of blood will be taken every 30-60 minutes, via cannulation, for a total of 8 hours (110 ml of blood total). Subsequently, there are 3 follow-up visits on the mornings of Days 1, 7, and 22 where one 10 ml blood sample is taken on each occasion. In the mornings of the long/whole study days at either D0 or D21, participants will receive the muffin test meal before stable isotopes, dissolved in sunflower oil, are administered via oral pipette. At D0 or D21, the total dose of pVACs (labelled and unlabelled carotenoids) consumed in the muffin and oil is 3 mg alongside 0.4 mg of pre-formed VA. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Not yet recruiting |
NCT03353662 -
Sub Regional Micronutrient Survey in Ethiopia
|
||
Completed |
NCT01061307 -
An Efficacy Trial of Iron, Zinc and Vitamin A Fortified Rice in Children in Satun, Thailand
|
Phase 0 | |
Completed |
NCT00082420 -
Retinol Equivalence of Plant Carotenoids in Children
|
N/A | |
Completed |
NCT03383744 -
Using Stable Isotopes to Assess the Effectiveness of Vitamin A Supplementation in Cameroon
|
N/A | |
Recruiting |
NCT04438200 -
Liver and Bone Retinol Levels in Guatemalan Adolescents and Adults
|
||
Not yet recruiting |
NCT06450925 -
Vitamin A Supplementation in Allogeneic Stem Cell Transplantation.
|
N/A | |
Completed |
NCT02996513 -
Assessing Model Parameters for Applying the Retinol Isotope Dilution (RID) Method
|
N/A | |
Completed |
NCT02027610 -
Vitamin A, Stool Microbiota and Vaccine Response in Bangladeshi Infants
|
N/A | |
Completed |
NCT02043223 -
Stopping Postpartum Vitamin A Supplementation: Missing Concealed Benefit
|
Phase 2/Phase 3 | |
Completed |
NCT01922713 -
Effect of Daily Consumption of Orange Maize on Breast Milk Retinol in Lactating Zambian Women
|
N/A | |
Completed |
NCT05882682 -
Impact of Food-to-Food Fortified Cereal Products on Diet Quality in Eldoret, Kenya
|
||
Completed |
NCT04632771 -
Nutritional Status and Bouillon Use in Northern Ghana
|
||
Completed |
NCT02760095 -
Effects of EED on Zn Absorption and Retention in Children From a Standard Dose
|
||
Active, not recruiting |
NCT01476358 -
Effect of Vitamin A Supplementation on Immune Responses in Human Neonates
|
Phase 2 | |
Completed |
NCT04137354 -
Iron and Vitamin A in School Children
|
N/A | |
Completed |
NCT00198718 -
Single-dose Postpartum Vitamin A Supplementation of Mothers and Neonates
|
Phase 2 | |
Not yet recruiting |
NCT04127968 -
Efficacy and Safety of Vitamin A Treatment for Children With Sepsis
|
N/A | |
Completed |
NCT03640104 -
Individualized Dietary Intervention in Breastfeeding Women: Body Weight and Vitamin A Stores
|
N/A | |
Completed |
NCT01614483 -
Efficacy of Yellow Cassava to Improve Vitamin A Status of Kenyan School Children
|
N/A | |
Completed |
NCT02804490 -
Efficacy of Biofortified Maize to Improve Maternal and Infant Vitamin A Status
|
Phase 3 |