Clinical Trials Logo

Vagus Nerve Diseases clinical trials

View clinical trials related to Vagus Nerve Diseases.

Filter by:
  • Not yet recruiting  
  • Page 1

NCT ID: NCT06027190 Not yet recruiting - Clinical trials for Esophageal Achalasia

Randomized Controlled Study of Optical 3D Navigated Repetitive Transcranial Magnetic Stimulation for Achalasia.

Start date: January 1, 2024
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to investigate the clinical efficacy of repetitive transcranial magnetic stimulation in the treatment of achalasia in patients diagnosed with achalasia by comprehensive evaluation of clinical symptoms, HREM, and barium meal examination, optimize rTMS treatment parameters, and provide an effective and noninvasive new treatment strategy for achalasia. The main questions it aims to answer are: 1. To investigate the clinical efficacy of individualized treatment of achalasia with optical 3D navigation repetitive transcranial magnetic stimulation. 2. Optimize rTMS parameters to achieve the best clinical treatment. Participants will need to fill out the Eckardt score scale and SF-36 quality of life scale, undergo cranial T1 structural magnetic resonance for functional connectivity analysis, and select the brain region with the strongest positive functional connectivity to the DMV as the rTMS target. All patients were randomly divided into four groups: sham-rTMS group, 5Hz-rTMS group, 10Hz-rTMS group, and 30Hz-rTMS group, and each group received acute and chronic stimulation, respectively. In the acute stimulation stage, patients only need to do rTMS once, and HREM and HRV detection are given before and after rTMS (stimulation for 1s, interval for 4s, 10 pulses per second, receiving a total of 3000 pulses); in the chronic stimulation stage, patients receive 25 minutes of rTMS actual stimulation or sham stimulation each time, lasting for 20 times, which is completed within 30 days, and the actual stimulation parameters are the same as those of acute stimulation, and the sham stimulation coil is consistent with the appearance and sound of proper stimulation, but there is no substantial stimulation. High-definition esophageal manometry, timed barium meal, heart rate coefficient of variation, and serum neurotransmitters were performed before and after chronic stimulation. Finally, a weekly telephone follow-up was performed for 12 weeks, including Eckardt score and SF-36 quality of life scale.

NCT ID: NCT05664854 Not yet recruiting - Epilepsy Clinical Trials

Electrical Impedance Tomography & Selective Stimulation of Vagus Nerve

EITsVNS
Start date: July 1, 2023
Phase: N/A
Study type: Interventional

Electroceuticals is a new field in which the goal is to treat a wide variety of medical diseases with electrical stimulation of autonomic nerves. A prime target for intervention is the cervical vagus nerve as it is easily surgically accessible and supplies many organs in the neck, thorax and abdomen. It would be desirable to stimulate selectively in order to avoid the off-target effects that currently occur. This has not been tried in the past, both because of limitations in available technology but also because, surprisingly, the fascicular organisation of the cervical vagus nerve is almost completely unknown. The aim of this research is to investigate the functional anatomy of fascicles in the cervical vagus nerve of humans. This will include defining innervation to the heart, lungs and recurrent laryngeal and, if possible, the oesophagus, stomach, pancreas, liver and gastrointestinal tract. It will be achieved by defining fascicle somatotopic functional anatomy with spatially-selective vagus nerve stimulation (sVNS) and the new method of fast neural imaging with Electrical Impedance Tomography (EIT). EIT is a novel imaging method in which reconstructed tomographic images of resistance changes related to the opening of ion channels over milliseconds can be produced using rings or arrays of external electrodes. In humans, using a nonpenetrating nerve cuff with sVNS or fast neural EIT, this will be performed for 30 minutes transiently during an operation to insert a vagal nerve stimulator for treatment of epilepsy and deliver images in response to activity such as respiration or the electrocardiogram (ECG).