View clinical trials related to Tongue Carcinoma.
Filter by:This clinical trial studies the effect of customized 3 dimensional (3D) printed oral tents on patients with head and neck cancer who are receiving radiotherapy. Oral stents are made from the impression of patients' mouth and cover patients' teeth and gums during radiation therapy. A customized, 3D-printed oral stent may help to reduce mouth blisters and/or sores that may develop in patients while receiving head and neck radiation therapy.
This randomized phase II trial studies the side effects and how well modestly reduced-dose intensity-modulated radiation therapy (IMRT) with or without cisplatin works in treating patients with oropharyngeal cancer that has spread to other places in the body (advanced). Radiation therapy uses high energy x rays to kill tumor cells. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether IMRT is more effective with or without cisplatin in treating patients with oropharyngeal cancer.
This randomized phase II trial studies how well cisplatin with or without WEE1 inhibitor MK-1775 works in treating patients with head and neck cancer that has come back or has spread to other parts of the body. Drugs used in chemotherapy, such as cisplatin, may prevent tumor cells from multiplying by damaging their deoxyribonucleic acid (DNA), which in turn stops the tumor from growing. WEE1 inhibitor MK-1775 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether cisplatin is more effective with or without WEE1 inhibitor MK-1775 in treating patients with head and neck cancer.
This phase II trial studies the effects of interstitial photodynamic therapy in patients with head and neck cancer that has come back. Interstitial photodynamic therapy uses a combination of laser light and a light-sensitive drug called porfimer sodium to destroy tumors. During treatment a laser light is used to activate the drug. Interstitial photodynamic therapy may be an effective treatment for head and neck cancer.
This phase II clinical trial studies how well soy isoflavones work in preventing head and neck cancer in patients with stage I-IV head and neck cancer undergoing surgery. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of soy isoflavones may prevent head and neck cancer recurrence.
This phase II trial studies how well giving temsirolimus together with cetuximab works compared to temsirolimus alone in treating patients with recurrent and/or metastatic head and neck cancer who did not respond to previous therapy. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether giving temsirolimus together with cetuximab is more effective than giving temsirolimus alone.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
This phase II trial studies how well vorinostat works in treating patients with adenoid cystic carcinoma that has come back (recurrent) or that has spread from where it started to nearby tissue or lymph nodes (locally advanced) or has spread to other places in the body (metastatic). Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
The purpose of this study is to see how the brain re-learns to control the tongue in speaking and swallowing when either portions of the tongue have been removed, or when the tongue has been treated with radiation, in order to treat cancer. We hope the results of this study will help us to improve healing for patients who are being treated for cancer of the tongue. When patients with cancer of the tongue are treated by removing parts of the tongue (surgery) or by destroying the cancer with radiation to the tongue, they have significant difficulty speaking and swallowing after such treatments. At this time, patients who have been treated for cancer of the tongue re-learn speaking and swallowing through exercises taught by a speech pathologist. What is needed is information on how the brain re-learns to control speaking and swallowing so that we can help these patients re-learn faster after their treatments.
This randomized phase III trial studies chemotherapy to see how well it works with or without bevacizumab in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or that has spread to other parts of the body (metastatic). Drugs used in chemotherapy, such as docetaxel, cisplatin, carboplatin, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab may also make tumor cells more sensitive to chemotherapy and stop the growth of head and neck cancer by blocking blood flow to the tumor. It is not yet known whether combination chemotherapy is more effective when given with or without bevacizumab in treating patients with head and neck squamous cell carcinoma.