Thyroid Cancer Clinical Trial
Official title:
A Phase II Study of the Efficacy and Safety of PD-1 Inhibitor and Anlotinib Combined With Multimodal Radiotherapy in the Second-line Treatment of Recurrent or Metastatic Anaplastic Thyroid Cancer
The purpose of this study is to evaluate the efficacy and safety of PD-1 inhibitor and anlotinib combined with multimodal radiotherapy for the second-line treatment of recurrent or metastatic anaplastic thyroid cancer.
Status | Recruiting |
Enrollment | 20 |
Est. completion date | December 30, 2025 |
Est. primary completion date | December 30, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Age 18 years or above. 2. Patients with pathologically confirmed Undifferentiated thyroid carcinoma and meet the following conditions: 1. Were diagnosed with distant metastasis; 2. Were intolerant to or failed first-line treatment. 3. Eastern Cooperative Oncology Group (ECOG) performance status 0-2. 4. Expected life is greater than or equal to 12 weeks. 5. There is at least one measurable lesion according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. 6. Adequate organ and bone marrow function: 1. Absolute neutrophil count = 1.5 × 10^9/L, hemoglobin = 80 g/L, platelets = 80 × 10^9/L; 2. ALT, AST and ALP < 2.5× upper limit of normal (ULN), total bilirubin = 2×ULN; albumin= 2.8 g/dL; 3. Creatinine clearance = 60 ml/min; 4. INR= 1.5, APTT= 1.5×ULN. 7. Written informed consent. Exclusion Criteria: 1. Existing tumor-related hemorrhage? 2. History of other malignancies (except for the history of malignant tumors that have been cured and have not recurred within 5 years, such as skin basal cell carcinoma, skin squamous cell carcinoma, superficial bladder cancer, in situ cervical cancer, and gastrointestinal mucosal cancer, etc.) 3. Have an active autoimmune disease requiring systemic treatment or a documented history of clinically severe autoimmune disease. 4. Any history of allergic disease, severe hypersensitivity reaction to drugs, or allergy to the study drug components. 5. Any prior therapy with: 1. Toxicity from prior antitumor therapy has not recovered to = CTCAE Version 5.0 Grade 1 or the level specified by the inclusion/exclusion criteria. 2. Antitumor vaccine; 3. Any active vaccine against infectious disease within 4 weeks prior to the first dose or planned during the study period; 4. Major surgery or serious trauma within 4 weeks before the first dose; 6. With serious medical diseases, such as grade II and above cardiac dysfunction (NYHA criteria), ischemic heart disease, supraventricular or ventricular arrhythmia, poorly controlled diabetes mellitus, poorly controlled hypertension, echocardiographic ejection fraction < 50%, etc. 7. With interstitial pneumonitis, non-infectious pneumonitis, active pulmonary tuberculosis, or a history of pulmonary tuberculosis infection that was not controlled by treatment. 8. With hyperthyroidism, or organic thyroid disease. 9. With active infection, or unexplained fever during the screening period or 48 hours before the first dose. 10. With active hepatitis B or C, or known history of positive HIV test, or acquired immunodeficiency syndrome. 11. History of a clear neurological or psychiatric disorder. 12. History of drug abuse or alcohol abuse. 13. Women who are pregnant or breastfeeding, or have a reproductive plan from the screening period to 3 months after the end of the study, or have sex without contraceptive measures, or are unwilling to take appropriate contraceptive measures. 14. Received any investigational drug within 4 weeks prior to the first dose, or concurrently enrolled in another clinical trial. 15. Any other factors that are not suitable for inclusion in this study judged by investigators. |
Country | Name | City | State |
---|---|---|---|
China | Xingchen Peng | Chengdu | Sichuan |
Lead Sponsor | Collaborator |
---|---|
West China Hospital |
China,
Chintakuntlawar AV, Rumilla KM, Smith CY, Jenkins SM, Foote RL, Kasperbauer JL, Morris JC, Ryder M, Alsidawi S, Hilger C, Bible KC. Expression of PD-1 and PD-L1 in Anaplastic Thyroid Cancer Patients Treated With Multimodal Therapy: Results From a Retrospective Study. J Clin Endocrinol Metab. 2017 Jun 1;102(6):1943-1950. doi: 10.1210/jc.2016-3756. — View Citation
Chintakuntlawar AV, Yin J, Foote RL, Kasperbauer JL, Rivera M, Asmus E, Garces NI, Janus JR, Liu M, Ma DJ, Moore EJ, Morris JC 3rd, Neben-Wittich M, Price DL, Price KA, Ryder M, Van Abel KM, Hilger C, Samb E, Bible KC. A Phase 2 Study of Pembrolizumab Combined with Chemoradiotherapy as Initial Treatment for Anaplastic Thyroid Cancer. Thyroid. 2019 Nov;29(11):1615-1622. doi: 10.1089/thy.2019.0086. — View Citation
Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015 Jan;25(1):11-7. doi: 10.1016/j.semradonc.2014.07.005. — View Citation
Gunda V, Gigliotti B, Ashry T, Ndishabandi D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, Freeman GJ, Alessandrini A, Parangi S. Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer. 2019 May 1;144(9):2266-2278. doi: 10.1002/ijc.32041. Epub 2019 Jan 24. — View Citation
Haddad RI, Nasr C, Bischoff L, Busaidy NL, Byrd D, Callender G, Dickson P, Duh QY, Ehya H, Goldner W, Haymart M, Hoh C, Hunt JP, Iagaru A, Kandeel F, Kopp P, Lamonica DM, McIver B, Raeburn CD, Ridge JA, Ringel MD, Scheri RP, Shah JP, Sippel R, Smallridge RC, Sturgeon C, Wang TN, Wirth LJ, Wong RJ, Johnson-Chilla A, Hoffmann KG, Gurski LA. NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. J Natl Compr Canc Netw. 2018 Dec;16(12):1429-1440. doi: 10.6004/jnccn.2018.0089. — View Citation
Lin B, Ma H, Ma M, Zhang Z, Sun Z, Hsieh IY, Okenwa O, Guan H, Li J, Lv W. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019 Sep 15;11(9):5888-5896. eCollection 2019. — View Citation
Lorusso L, Pieruzzi L, Biagini A, Sabini E, Valerio L, Giani C, Passannanti P, Pontillo-Contillo B, Battaglia V, Mazzeo S, Molinaro E, Elisei R. Lenvatinib and other tyrosine kinase inhibitors for the treatment of radioiodine refractory, advanced, and progressive thyroid cancer. Onco Targets Ther. 2016 Oct 20;9:6467-6477. doi: 10.2147/OTT.S84625. eCollection 2016. — View Citation
Perrier ND, Brierley JD, Tuttle RM. Differentiated and anaplastic thyroid carcinoma: Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2018 Jan;68(1):55-63. doi: 10.3322/caac.21439. Epub 2017 Nov 1. — View Citation
Pezzi TA, Mohamed ASR, Sheu T, Blanchard P, Sandulache VC, Lai SY, Cabanillas ME, Williams MD, Pezzi CM, Lu C, Garden AS, Morrison WH, Rosenthal DI, Fuller CD, Gunn GB. Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: Outcomes from the National Cancer Data Base. Cancer. 2017 May 1;123(9):1653-1661. doi: 10.1002/cncr.30493. Epub 2016 Dec 27. — View Citation
Ruan X, Shi X, Dong Q, Yu Y, Hou X, Song X, Wei X, Chen L, Gao M. Antitumor effects of anlotinib in thyroid cancer. Endocr Relat Cancer. 2019 Jan 1;26(1):153-164. doi: 10.1530/ERC-17-0558. — View Citation
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8. — View Citation
Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski C, Cabanillas ME, Urbanowitz G, Mookerjee B, Wang D, Rangwala F, Keam B. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J Clin Oncol. 2018 Jan 1;36(1):7-13. doi: 10.1200/JCO.2017.73.6785. Epub 2017 Oct 26. — View Citation
Sun C, Li Q, Hu Z, He J, Li C, Li G, Tao X, Yang A. Treatment and prognosis of anaplastic thyroid carcinoma: experience from a single institution in China. PLoS One. 2013 Nov 5;8(11):e80011. doi: 10.1371/journal.pone.0080011. eCollection 2013. — View Citation
Sun Y, Niu W, Du F, Du C, Li S, Wang J, Li L, Wang F, Hao Y, Li C, Chi Y. Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors. J Hematol Oncol. 2016 Oct 4;9(1):105. doi: 10.1186/s13045-016-0332-8. — View Citation
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012 Jun 28;366(26):2443-54. doi: 10.1056/NEJMoa1200690. Epub 2012 Jun 2. — View Citation
* Note: There are 15 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Objective response rate | ORR is defined as the percentage of patients who achieve a response, which can either be complete response (complete disappearance of lesions) or partial response (reduction in the sum of maximal tumor diameters by at least 30% or more) | Up to 60 months | |
Secondary | Progress-Free Survival | PFS is defined as the time from the administration of the first dose to first disease progression or death. | Up to 60 months | |
Secondary | Overall Survival | OS is defined as the time from the administration of the first dose to death. | Up to 60 months | |
Secondary | Adverse events | defined as the number of participants with adverse events using CTCAE Criteria. | Up to 60 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05774535 -
Prospective, Observational Study on the Carotid Intima-media Thickness in Patients Undergoing Thyroid Surgery
|
||
Withdrawn |
NCT04224792 -
Effects of Exercise Training on Fatigue in Thyroid Cancer Survivors
|
N/A | |
Completed |
NCT01728623 -
A Study of E7080 in Subjects With Advanced Thyroid Cancer
|
Phase 2 | |
Recruiting |
NCT03175224 -
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
|
Phase 2 | |
Completed |
NCT02911155 -
Cancer and Other Disease Risks in U.S. Nuclear Medicine Technologists
|
||
Recruiting |
NCT05025046 -
NGS-based Thyroscan Genomic Classifier in the Diagnosis of Thyroid Nodules
|
||
Not yet recruiting |
NCT03978351 -
The Role of Midkine in Diagnosis of Thyroid Cancer
|
||
Completed |
NCT02658513 -
Evaluation of Lancet Blood Sampling for Radioiodine Dosimetry in Thyroid Cancer
|
||
Terminated |
NCT02628535 -
Safety Study of MGD009 in B7-H3-expressing Tumors
|
Phase 1 | |
Completed |
NCT02375451 -
Effect of Childhood Radioiodine Therapy on Salivary Function
|
N/A | |
Withdrawn |
NCT01994200 -
Developing and Implementing an Interdisciplinary Team-Based Care Approach (ITCA-ThyCa) for Thyroid Cancer Patients
|
Phase 1/Phase 2 | |
Terminated |
NCT01403324 -
Comparison of Dosimetry After rhTSH or Withdrawal of Thyroid Hormone in Metastatic or Locally Advanced Thyroid Cancer
|
N/A | |
Completed |
NCT00970359 -
Reacquisition of Radioactive Iodine (RAI) Uptake of RAI-Refractory Metastatic Thyroid Cancers by Pretreatment With the Selective MEK Inhibitor AZD6244
|
N/A | |
Completed |
NCT00439478 -
Dental Safety Profile of High-Dose Radioiodine Therapy
|
Phase 4 | |
Completed |
NCT00223158 -
Evaluation Study of L-T3 Utility in the Follow-up of Patients With Thyroid Cancer
|
N/A | |
Active, not recruiting |
NCT04544111 -
PDR001 Combination Therapy for Radioiodine-Refractory Thyroid Cancer
|
Phase 2 | |
Completed |
NCT04876287 -
Salivary dysfuncTion After Radioiodine Treatment
|
||
Recruiting |
NCT06073223 -
Intervention to Decrease Overtreatment of Patients With Low-risk Thyroid Cancer
|
N/A | |
Recruiting |
NCT06037174 -
Comparison of Quality of Life in Patients With Differentiated Thyroid Carcinoma Undergoing Different Surgery
|
||
Recruiting |
NCT04952493 -
Anlotinib or Penpulimab in Combination With RAI for DTC
|
Phase 2 |