View clinical trials related to Thermoregulation.
Filter by:Chilblains, also known as perniosis, is a non-freezing cold injury causing painful inflammatory skin lesions. Chilblains typically affect the dorsal feet or hands, causing inflammatory skin lesions that are often painful, and their pathogenesis remains only partly understood. To improve diagnosis and management, it is vital to focus entirely on chilblains and consider the patient-related and environmental factors that characterize this disorder. Because of this, it's critical to investigate the thermoregulatory function, of individuals with idiopathic chilblains while they are exposed to various environmental conditions (cold and neutral environments).
Acute mirabegron administration has been shown to increase brown fat activity in humans. Long-term mirabegron administration upregulates brown fat, and appears to improve glucose regulation, and change skeletal muscle phenotype.
It is still unknown when the first bath should be done in premature newborns. Investigators think that delaying the time of the first bath compared to the time in the clinic will show some positive changes in preterm newborns.
Sleep propensity was assessed in terms of the duration of a spontaneous episode of wakefulness (W). Skin temperatures at six body sites (the abdomen, pectoral region, eye, hand, thigh and foot) were measured (using infrared thermography) during nocturnal polysomnography in 29 9-day-old preterm neonates (postmenstrual age: 209 9 days). Te investigators then determined whether the duration of the W episode depended upon the local skin temperatures measured at the start, during and end of the episode.
This study evaluates the impact of active thermoregulation on free flap microcirculation following free flap transfer. Thermoregulation is performed by passive warming, active warming (water circulation based device) and active cooling. Changes in microcirculation are assessed using combined laser Doppler flowmetry and remission spectroscopy.
In humans, the primary means of cooling the body during exercise is through the evaporation of sweat from the skin surface. Clothing represents a layer of insulation that hinders the evaporation of sweat from the surface of the skin. It follows that clothing that imposes the least amount of resistance to evaporative heat loss may prove beneficial to the thermoregulatory, physiological and perceptual response to exercise, particularly in elite endurance-trained athletes. Thus, the purpose on this study is to examine the influence of wearing a sportswear garment made of a fabric (100% nylon) with superior evaporative characteristics on detailed thermoregulatory, cardiorespiratory, metabolic and perceptual responses to maximal exercise testing at normal room temperature and relatively humidity in a group of 25 endurance-trained cyclists and triathletes aged 20-60 years. It is hypothesized that wearing a garment made of 100% nylon will improve exercise performance (e.g., exercise endurance time) and that this improvement will reflect improvements in thermoregulatory, cardiorespiratory, metabolic and perceptual responses to exercise. Athletes will be recruited via contact with coaches of the McGill University Cycling and Triathlon teams as well as through contact with coaches of competitive cycling and triathlon teams/training groups in the Montreal and surrounding area. Initial contact will consist of a thorough explanation of the study procedures and pre-screening for the inclusion/exclusion criteria prior to study consent by the Principal Investigator and/or his delegate, either in person or by telephone or email. Eligible participants will visit McGill's Clinical Exercise & Respiratory Physiology Laboratory on 3 separate occasions over a period of 10-14 days. Visit 1 will include a maximal incremental bicycle exercise test for familiarization purposes and to determine maximal power output (MPO). Visits 2 and 3 will include a constant-power-output bicycle exercise test at 85% MPO under one of two conditions, in randomized order: (1) while wearing a garment made of 100% polyester, i.e., placebo; and (2) while wearing a garment made of 100% nylon, i.e., cooling fabric. At rest and during exercise at visits 2 and 3, detailed assessments of core body temperature will be made using a temperature sensor placed into the esophagus, while skin temperature and other physiological and perceptual parameters will be measured using standard techniques.