View clinical trials related to Thalassemia.
Filter by:The goal of this open label, single-arm clinical study is to learn about the safety and efficacy of CS-101 in treating β-thalassemia.
Background: Sickle cell disease (SCD) is an inherited blood disorder. The disease affects the ability of red blood cells to carry oxygen; this in turn can injure organs including the heart, lungs, and kidneys. SCD can lead to serious illness and death. Treatments such as bone marrow transplants and gene therapies can cure SCD, but they are not widely available. Current drug treatments for SCD are not always effective. This natural history study will examine how a study drug (mitapivat) affects red blood cells in people with SCD. Objective: To learn how mitapivat affects red blood cells in people with SCD. Eligibility: People with SCD who are enrolled in the parent study, NIH protocol IRB001565-H. Design: Procedures for this study will be done during visits already scheduled for the parent study. Participants will have additional blood drawn during study visits. The additional amount will be about 3.5 teaspoons. Participants will undergo a test called near infrared spectroscopy (NIRS) up to 9 times. Probes will be placed on their skin. A blood pressure cuff will be placed on their arm. The cuff will be filled with air for up to 5 minutes and then released. Participants may be asked to breathe at a certain rate or to hold their breath during these measurements. NIRS measures oxygen levels, blood flow, and the makeup of skin and muscle. Researchers will draw additional information for this study from participants medical records.
This is a non-randomized, open label, multi-site, single-dose, phase 1/2 study in subjects with Transfusion-Dependent β-Thalassemia (TDT). The study will evaluate the safety and efficacy of autologous CRISPR-Cas9 modified CD34+ human hematopoietic stem and progenitor cells (hHSPCs) (BRL-101)
Primary Objectives: Long-term safety of BIVV003 in participants with severe sickle cell disease (SCD) and ST- 400 in participants with transfusion-dependent beta-thalassemia (TDT) Secondary Objectives: - Long-term efficacy of the biological treatment effect of BIVV003 in SCD - Long-term efficacy of the clinical treatment effect of BIVV003 on SCD-related clinical events - Long-term efficacy of the biological treatment effect of ST-400 in TDT - Long-term efficacy of the clinical treatment effect of ST-400 in TDT
This is a multi-site, open- label rollover study to evaluate the long-term safety and efficacy of CTX001 in pediatric and adult participants who received CTX001 in parent studies 111 (NCT03655678) 141 (NCT05356195) or 161 (NCT05477563) (transfusion-dependent β-thalassemia [TDT] studies) or Study 121 (NCT03745287) or 151 (NCT05329649), 161(NCT05477563),171 (NCT05951205) (severe sickle cell disease [SCD] studies).
Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.
In order to study the transplantation effect of hematopoetic stem cells from beta-thalassemia induced pluripotent stem cells. We applied clinical grade source of autologous hematopoietic stem cell for the treatment of beta-thalassemia patients, detecting the homing of hematopoietic stem cell transplantation, the differentiation of hematopoietic stem cells in vivo and the hemoglobin beta-chain (HBB) protein expression in the body of recovery, etc., as well as to make a research on the efficacy and safety of hematopoietic stem cells from beta-thalassemia induced pluripotent stem cells.
The investigators aims to evaluate the safety of in utero hematopoietic stem cell transplantation in fetuses with alpha-thalassemia major performed at the time of in utero transfusion of red blood cells.