View clinical trials related to Tay-Sachs Disease.
Filter by:We want to see if Zavesca (or miglustat) is safe and can be tolerated by patients with acute infantile onset GM2 gangliosidosis - classical Tay-Sachs and infantile onset Sandhoff disease. We know that miglustat inhibits the formation of GM2 ganglioside, the compound that is stored in the brains of children with Tay-Sachs and Sandhoff disease. Since it inhibits the synthesis of ganglioside, miglustat may be able to reduce or delay the onset of clinical symptoms.
Hypothesis: To characterize and describe disease progression and heterogeneity of the gangliosidosis diseases. This research study seeks to develop a quantitative method to delineate disease progression for the gangliosidosis diseases (Tay-Sachs disease, Sandhoff disease, and GM1 gangliosidosis) in order to better understand the natural history and heterogeneity of these diseases. Such a quantitative method will also be essential for evaluating any treatments that may become available in the future, such as gene therapy. The data from this study will be necessary to provide end-points for future therapies, guide medical decisions about treatment, provide objective measurement of treatment outcomes, and accurately inform parents regarding potential outcomes.
The purpose of the study is to investigate the pharmacokinetics of Zavesca (miglustat, OGT918) when given as single and multiple doses in juvenile patients with GM2 gangliosidosis.
Hematopoietic stem cell transplantation has proven effective therapy for individuals with adrenoleukodystrophy (ALD), metachromatic leukodystrophy (MLD) or globoid cell leukodystrophy (GLD, or Krabbe disease). This protocol also considers other inherited metabolic diseases such as, but not limited to, GM1 gangliosidosis, Tay Sachs disease, Sanfilippo syndrome or Sandhoff disease, I-cell disease (mucolipidosis II). For patients with advanced or rapidly progressive disease, the morbidity and mortality with transplantation is unacceptably high. Unfortunately, there are no viable alternative therapeutic options for these patients; if transplantation is not performed the patients are sent home to die. Our group at Minnesota has developed a new protocol incorporating transplantation using a reduced intensity conditioning regimen designed to decrease toxicity associated with the transplant procedure. This regimen will make use of the drug clofarabine, which has lympholytic and immune suppressive properties without the neurologic toxicity observed in the related compound, fludarabine, commonly used for transplantation. In addition, several agents providing anti-oxidant and anti-inflammatory properties will be used to assist in the stabilization of the disease processes. This revised transplant protocol will test the following: 1) the ability to achieve engraftment with the reduced intensity protocol, 2) the mortality associated with transplant by day 100, 3) patient outcomes, based on differential neurologic, neuropsychologic, imaging and biologic evaluations prior to transplantation and at designated points after transplantation (day 100, 6 months, 1, 2 and 5 years). Additional biologic studies will include pharmacokinetics of clofarabine and mycophenolate mofetil (MMF). In addition, for patients undergoing lumbar puncture studies, cerebrospinal fluid (CSF) will be requested for determinations of biologic parameters.
The purpose of this study is to determine the safety and engraftment of donor hematopoietic cells using this conditioning regimen in patients undergoing a hematopoietic (blood forming) cell transplant for an inherited metabolic storage disease.
OBJECTIVES: I. Determine the phenotypic heterogeneity of patients with genetic disorders including their clinical spectrum and natural history. II. Develop and evaluate novel methods for the treatment of genetic disorders including metabolic manipulation, enzyme manipulation, enzyme replacement, enzyme transplantation, and gene transfer techniques in these patients. III. Develop and evaluate methods for the prenatal diagnosis of genetic disorders using improved cytogenetic, biochemical, and nucleic acid techniques and amniotic fluid cells or chorionic villi in these patients.