Clinical Trials Logo

T Acute Lymphoblastic Leukemia clinical trials

View clinical trials related to T Acute Lymphoblastic Leukemia.

Filter by:
  • Terminated  
  • Page 1

NCT ID: NCT03519984 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

EphB4-HSA Fusion Protein and Cytarabine /or Liposomal Vincristine in Patients With Recurrent or Refractory Acute Leukemia

Start date: May 9, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of recombinant EphB4-HSA fusion protein when given together with cytarabine or vincristine liposomal in treating participants with acute leukemia that has come back or has not responded to treatment. Drugs used in chemotherapy, such as recombinant ephb4-HSA fusion protein, cytarabine, and vincristine liposomal, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving the drugs in different combinations may kill more cancer cells.

NCT ID: NCT02767934 Terminated - Clinical trials for Minimal Residual Disease

Pembrolizumab in Treating Minimal Residual Disease in Patients With Acute Lymphoblastic Leukemia

Start date: January 13, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well pembrolizumab works in treating small amounts of cancer cells that remain after attempts to remove the cancer has been made in patients with acute lymphoblastic leukemia. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT02763384 Terminated - Clinical trials for T-Acute Lymphoblastic Leukemia

BL-8040 and Nelarabine for Relapsed or Refractory T-Acute Lymphoblastic Leukemia/ Lymphoblastic Lymphoma

Start date: December 2, 2016
Phase: Phase 2
Study type: Interventional

The outcome of patients with relapsed or refractory adult T-acute lymphoblastic leukemia (T-ALL) and the related disease T-lymphoblastic lymphoma (T-LBL) is extremely poor with 30% of the patients responding to first salvage therapy and long-term survival of only 10%. Therefore, novel therapies for patients with relapsed/refractory T-ALL/LBL represent an unmet clinical need. Recent data provide strong evidence that CXCR4 signaling plays a major role in T-cell leukemia cell maintenance and leukemia initiating activity, and targeting CXCR4 signaling in T-ALL cells reduces tumor growth in an animal model. In this study, the investigators propose that the addition of BL-8040 to nelarabine as a salvage therapy for patients with relapsed/refractory T-ALL/LBL will result in a higher complete remission (CR) rate than nelarabine alone without an increase in toxicity and will allow patients to proceed to a potentially curative allogeneic hematopoietic cell transplant.