View clinical trials related to Stage IVA Ovarian Cancer AJCC v8.
Filter by:This phase I trial studies the side effects of hyperthermic intraepithelial chemotherapy with cisplatin after surgery or cisplatin before surgery in treating patients with stage III or IV ovarian, fallopian tube or peritoneal cancer receiving chemotherapy before surgery. Hyperthermic intraepithelial chemotherapy involves the infusion of heated cytotoxic chemotherapy that circulates into the abdominal cavity at the time of surgery. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving hyperthermic intraepithelial chemotherapy with cisplatin after surgery or cisplatin before surgery may kill more tumor cells compared to usual care.
This phase Ib trial tests the safety, side effects, and best dose of tumor treating fields therapy in combination with either cabozantinib or nab-paclitaxel and atezolizumab in treating patients with solid tumors involving the abdomen or thorax that have spread to other parts of the body (advanced). Tumor treating fields therapy on this study utilizes NovoTTF systems that are wearable devices that use electrical fields at different frequencies that may help stop the growth of tumor cells by interrupting cancer cells' ability to divide. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals tumor cells to multiply. This helps slow or stop the spread of tumor cells. Chemotherapy drugs, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tumor treating fields therapy in combination with either cabozantinib, or with nab-paclitaxel and atezolizumab may help control advanced solid tumors involving the abdomen or thorax.
To find the highest tolerable dose of IACS-6274 that can be given alone, in combination with bevacizumab and paclitaxel, or in combination with capivasertib to patients who have solid tumors. The safety and tolerability of the study drug(s) will also be studied.
The study aims to develop a test for early detection of ovarian cancer using DNA from a growth involving the ovary found in a washing of the uterus (womb), and proteins found in the blood. The samples of the wash and the blood will be taken before surgery. After surgery, doctors will determine whether the participant had ovarian cancer or a benign disease of the ovaries. The tests of the washings and the blood will be examined to see how much the participants with ovarian cancer can be separated from the participants with a benign ovarian disease by the tests. Small amounts from the washing and the blood samples will be sent to four sites for analysis. Statistical analyses of these data will compare tumor DNA found in the washing of the uterus with proteins in the blood to detect cases of ovarian cancer. The primary goal is to find tests that are mostly positive for cases of ovarian cancer and mostly negative for patients with benign disease. It is hoped that if the tests work for participants with symptoms of the disease that these tests will also work when testing women who have no symptoms. A new study would be needed to see if the tests worked in this situation. If the tests work, this could lead to increasing the number of cases detected in early stage disease and decreasing the number of cases detected in late stage disease. If this change in late stage is large, it will likely reduce deaths due to ovarian cancer.
This phase III trial compares minimally invasive surgery (MIS) to laparotomy in treating patients with stage IIIC-IV ovarian, primary peritoneal, or fallopian tube cancer who are receiving chemotherapy before and after surgery (neoadjuvant chemotherapy). MIS is a surgical procedure that uses small incision(s) and is intended to produce minimal blood loss and pain for the patient. Laparotomy is a surgical procedure which allows the doctors to remove some or all of the tumor and check if the disease has spread to other organs in the body. MIS may work the same or better than standard laparotomy after chemotherapy in prolonging the return of the disease and/or improving quality of life after surgery.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.
This phase I trial investigates the side effects and best dose of abexinostat and palbociclib when given together with fulvestrant in treating patients with breast or gynecologic cancer. Abexinostat may prevent tumor cells from growing and multiplying and may kill tumor cells. Palbociclib may prevent or slow the growth of tumor cells when used with other anti-hormonal therapy. Estrogen can cause the growth of breast and gynecologic tumor cells. Fulvestrant may help fight breast or gynecologic cancer by blocking the use of estrogen by the tumor cells. Giving abexinostat, palbociclib, and fulvestrant may work better in treating patients with breast or gynecologic cancer.
This phase I trial studies the side effects of pressurized intraperitoneal aerosol chemotherapy (PIPAC) in treating patients with ovarian, uterine, appendiceal, stomach (gastric), or colorectal cancer that has spread to the lining of the abdominal cavity (peritoneal carcinomatosis). Chemotherapy drugs, such as cisplatin, doxorubicin, oxaliplatin, leucovorin, fluorouracil, mitomycin, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PIPAC is a minimally invasive procedure that involves the administration of intraperitoneal chemotherapy. The study device consists of a nebulizer (a device that turns liquids into a fine mist), which is connected to a high-pressure injector, and inserted into the abdomen (part of the body that contains the digestive organs) during a laparoscopic procedure (a surgery using small incisions to introduce air and to insert a camera and other instruments in the abdominal cavity for diagnosis and/or to perform routine surgical procedures). Pressurization of the liquid chemotherapy through the study device results in aerosolization (a fine mist or spray) of the chemotherapy intra-abdominally (into the abdomen). Giving chemotherapy through PIPAC may reduce the amount of chemotherapy needed to achieve acceptable drug concentration, and therefore potentially reduces side effects and toxicities.
This early phase I trial studies how well a genetic test called pharmacogenomics works in directing the optimal use of supportive care medications in patients with stage III-IV cancer. Pharmacogenomics is the study of how genes may affect the body's response to and interaction with some prescription medications. Genes, which are inherited from parents, carry information that determines things such as eye color and blood type. Genes can also influence how patients process and respond to medications. Depending on the genetic makeup, some medications may work faster or slower or produce more or fewer side effects. Pharmacogenomics testing may help doctors learn more about how patients break down and process specific medications based on their genes and improve the quality of life of cancer patients receiving clinical care.
The goals of this prospective, observational cohort study are to determine the feasibility of implementing paclitaxel therapeutic drug monitoring for cancer patients and explore the relationship between paclitaxel drug exposure and the development of neuropathic symptoms. This trial studies if paclitaxel can be consistently measured in the blood of patients with solid tumors undergoing paclitaxel treatment. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Nerve damage is one of the most common and severe side effects of paclitaxel. The ability to consistently measure paclitaxel in the blood may allow doctors to control the dose of paclitaxel, so that enough chemotherapy is given to kill the cancer, but the side effect of nerve damage is reduced.