View clinical trials related to Stage IV Rectal Cancer AJCC v8.
Filter by:This phase I/II trial tests the safety, side effects, best dose, and efficacy of FOLFOX and bevacizumab in combination with botensilimab and balstilimab (3B-FOLFOX) in treating patients with microsatellite stable (MSS) colorectal cancer that has spread from where it first started (primary site) to other places in the body (metastatic). Chemotherapy drugs, such as FOLFOX, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Balstilimab and botensilimab are in a class of medications called monoclonal antibodies. They bind to proteins, called PD-L1 and CTLA-4, which is found on some types of tumor cells. These PD-1 and CTLA-4 proteins are known to affect the body's defense mechanism to identify and fight against tumor cells. The combination of these drugs may lead to improved disease control and outcomes in patients with MSS metastatic colorectal cancer.
This phase II trial studies whether tucatinib combined with trastuzumab and TAS-102 works to shrink tumors in patients with HER2 positive colorectal cancer that has spread to other parts of the body (metastatic) and has one of the following gene mutations detected in blood: PIK3CA, KRAS, NRAS, or BRAF V600. Tucatinib is in a class of medications called kinase inhibitors. It works by blocking the action of the abnormal protein that signals tumor cells to multiply. This helps stop or slow the spread of tumor cells. Trastuzumab is a form of targeted therapy because it attaches itself to specific molecules (receptors) on the surface of tumor cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the tumor cell may be marked for destruction by the body's immune system. TAS-102 is a combination of 2 drugs; trifluridine and tipiracil. Trifluridine is in a class of medications called thymidine-based nucleoside analogues. It works by stopping the growth of tumor cells. Tipiracil is in a class of medications called thymidine phosphorylase inhibitors. It works by slowing the breakdown of trifluridine by the body. Giving tucatinib, trastuzumab, and TAS-102 together may work better than usual treatment for metastatic colorectal cancer.
This phase II trial tests whether adding nivolumab to the usual treatment (encorafenib and cetuximab) works better than the usual treatment alone to shrink tumors in patients with colorectal cancer that has spread to other places in the body (metastatic) or that cannot be removed by surgery (unresectable) and whose tumor has a mutation in a gene called BRAF. Encorafenib is in a class of medications called kinase inhibitors. It is used in patients whose cancer has a certain mutation (change) in the BRAF gene. It works by blocking the action of mutated BRAF that signals cancer cells to multiply. This helps to stop or slow the spread of cancer cells. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab in combination with encorafenib and cetuximab may be more effective than encorafenib and cetuximab alone at stopping tumor growth and spreading in patients with metastatic or unresectable BRAF-mutant colorectal cancer.
This clinical trial studies if enhanced outpatient symptom management with telemedicine and remote monitoring can help reduce acute care visit due to chemotherapy-related adverse events. Receiving telemedicine and remote monitoring may help patients have better outcomes (such as fewer avoidable emergency room visits and hospitalizations, better quality of life, fewer symptoms, and fewer treatment delays) than patients who receive usual care.
This phase Ib/II trial investigates the side effects and best dose of LY3214996 when given together with cetuximab alone or in combination with abemaciclib and to see how well they work in treating patients with colorectal cancer that cannot be removed by surgery (unresectable) and/or has spread to other places in the body (metastatic). Cetuximab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. LY3214996 and abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving LY3214996 and cetuximab alone or in combination with abemaciclib may help treat patients with colorectal cancer.
This phase Ib/II trial studies the side effects and best dose of SX-682 that can be given alone and in combination with nivolumab in treating patients with RAS-Mutated, microsatellite stable (MSS) colorectal cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). SX-682 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving SX-682 alone and together with nivolumab may kill more tumor cells.
This phase I trial studies the side effects and best dose of regorafenib when given together with ipilimumab and nivolumab in treating patients with microsatellite stable colorectal cancer that has spread to other places in the body (metastatic) and remains despite chemotherapy treatment (resistant). Regorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving regorafenib, ipilimumab and nivolumab may slow the tumor growth and/or shrink the tumor size in patients with colorectal cancer.
This phase II trial studies how well retreatment with panitumumab works compared to standard of care regorafenib or trifluridine and tipiracil hydrochloride (TAS-102) in treating patients with colorectal cancer that is negative for RAS wild-type colorectal cancer has spread to other places in the body (metastatic), and/or cannot be removed by surgery (unresectable), and is negative for resistance mutations in blood. Treatment with panitumumab may interfere with the ability of tumor cells to grow and spread. Some tumors need growth factors to keep growing. Growth factor antagonists, such as regorafenib, may interfere with the growth factor and stop the tumor from growing. Drugs used in chemotherapy, such as TAS-102, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving panitumumab may work better in treating patients with colorectal cancer than with the usual treatment of regorafenib or TAS-102.
This trial screens patients with colon or rectal cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable) for genetic mutations for recommendation to a molecularly assigned therapy. Identifying gene mutations may help patients enroll onto target companion trials that target these mutations.
This phase II trial studies how well savolitinib works in treating patients with MET amplified colorectal cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). Savolitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.