View clinical trials related to Stage IV Prostate Cancer.
Filter by:This clinical trial implements a communication intervention to improve patient-oncologist communication in the outpatient medical oncology setting. A communication brochure called the ASQ brochure may help patients prepare for the doctor visit by thinking through the questions that patients and patients' family want to ask the doctor.
This trial studies how well fluciclovine 18F PET/CT imaging works in assessing hormone-naive men with prostate cancer that has spread to the bone. Fluciclovine 18F is a radioactive drug used to measure tumor growth. PET/CT uses x-rays to take pictures inside the body. Comparing results of fluciclovine 18F PET/CT imaging may help doctors predict a patient's response to treatment and help plan the best treatment.
This phase I trial studies the best dose and side effects of niclosamide when given together with enzalutamide in treating patients with castration-resistant prostate cancer that has come back or has spread to other places in the body. Androgens can cause the growth of prostate cancer cells. Hormone therapy using enzalutamide may fight prostate cancer by lowering the amount of androgen the body makes and/or blocking the use of androgen by the tumor cells. Niclosamide may block signals that enhance prostate cancer cell growth. Giving enzalutamide and niclosamide may work better in treating patients with castration-resistant prostate cancer.
This pilot clinical trial studies how well acceptance and commitment therapy works in improving well-being in patients with stage III-IV cancer and their partners. Learning how to accept negative thoughts and feelings and how to live in the present without worrying about the future or past may improve coping skills in patients with stage III-IV cancer and their partners.
This pilot trial studies how well nanoparticle albumin-bound rapamycin works in treating patients with cancer that as has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced cancer) and that has an abnormality in a protein called mechanistic target of rapamycin (mTOR). Patients with this mutation are identified by genetic testing. Patients then receive nanoparticle albumin-bound rapamycin, which may stop the growth of cancer cells by blocking the mTOR enzyme, which is needed for cell growth and multiplication. Using treatments that target a patient's specific mutation may be a more effective treatment than the standard of care treatment.
This pilot phase I trial studies copper Cu 64 TP3805 (Cu-64-TP3805) positron emission tomography (PET)/computed tomography (CT) in detecting cancer in patients with prostate cancer undergoing surgery to remove the entire prostate and some of the tissue around it (radical prostatectomy). Many patients with benign lesions must undergo biopsy to test the lesion. Cu-64-TP3805 is a radioactive substance that attaches to cancer cells but not normal cells. PET/CT uses a scanner to make detailed, computerized pictures of areas inside the body where the radioactive substance is lighting up. Using Cu-64-TP3805 PET/CT scans and comparing them with cancer tissue obtained from surgery may help doctors learn whether Cu-64-TP3805 PET/CT can accurately detect prostate lesions and determine whether they are cancerous or benign, which may minimize the need for prostate biopsies.
This pilot clinical trial studies docetaxel and carboplatin in treating patients with castration resistant prostate cancer that has spread from the primary site (place where it started) to other places in the body (metastatic) and contains inactivated genes in the BRCA 1/2 pathway. Drugs used in chemotherapy, such as docetaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This randomized pilot trial studies vaccine therapy and pembrolizumab in treating patients with prostate cancer that does not respond to treatment with hormones (hormone-resistant) and has spread to other places in the body (metastatic). Vaccines made from deoxyribonucleic acid (DNA), such as pTVG-HP plasmid DNA vaccine, may help the body build an effective immune response to kill tumor cells. Monoclonal antibodies, such as pembrolizumab, may find tumor cells and help kill them. Giving pTVG-HP plasmid DNA vaccine and pembrolizumab may kill more tumor cells.
This pilot phase II trial studies the side effects and how well pembrolizumab and cryosurgery work with short term androgen ablation to treat patients with prostate cancer that has traveled from the original tumor, through the body, and formed a small number of new tumors in other parts of the body (oligo-metastatic). Cryosurgery, also known as cryoablation or cryotherapy, kills tumor cells by freezing them. The process also incites an immune response within the ablated tumor. Giving monoclonal antibodies such as pembrolizumab which enhance a systemic anti-cancer immune response, may augment the effects of cryosurgery and increase tumor killing at distant (metastatic) sites.
This research trial studies molecular features and pathways in predicting drug resistance in patients with castration-resistant prostate cancer that has spread to other parts of the body and who are receiving enzalutamide. Studying samples of blood and tissue in the laboratory from patients receiving enzalutamide may help doctors learn more about molecular features and pathways that may cause prostate cancer to be resistant to the drug.