View clinical trials related to Stage IV Mantle Cell Lymphoma.
Filter by:This phase I multicenter feasibility trial is studying the safety and potential efficacy of infusing ex vivo expanded cord blood progenitors with one unmanipulated umbilical cord blood unit for transplantation following conditioning with fludarabine, cyclophosphamide and total body irradiation (TBI), and immunosuppression with cyclosporine and mycophenolate mofetil (MMF) for patients with hematologic malignancies. Chemotherapy, such as fludarabine and cyclophosphamide, and TBI given before an umbilical cord blood transplant stops the growth of leukemia cells and works to prevent the patient's immune system from rejecting the donor's stem cells. The healthy stem cells from the donor's umbilical cord blood help the patient's bone marrow make new red blood cells, white blood cells, and platelets. It may take several weeks for these new blood cells to grow. During that period of time, patients are at increased risk for bleeding and infection. Faster recovery of white blood cells may decrease the number and severity of infections. Studies have shown that counts are more likely to recover more quickly if increased numbers of cord blood cells are given with the transplant. We have developed a way of growing or "expanding" the number of cord blood cells in the lab so that there are more cells available for transplant. We are doing this study to find out whether or not giving these expanded cells along with one unexpanded cord blood unit is safe and if use of expanded cells can decrease the time it takes for white blood cells to recover after transplant. We will study the time it takes for blood counts to recover, which of the two cord blood units makes up the patient's new blood system, and how quickly immune system cells return
This phase I trial is studying the best dose of 3-AP and the side effects of giving 3-AP together with gemcitabine in treating patients with advanced solid tumors or lymphoma. Drugs used in chemotherapy, such as 3-AP and gemcitabine (GEM), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help gemcitabine kill more cancer cells by making the cells more sensitive to the drug. 3-AP may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial is studying the side effects and best dose of fenretinide and to see how well it works when given together with rituximab in treating patients with B-cell non-Hodgkin lymphoma. Drugs used in chemotherapy, such as fenretinide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving fenretinide together with rituximab may kill more cancer cells.
This phase I trial is studying the side effects and best dose of vorinostat when given together with decitabine in treating patients with advanced solid tumors or relapsed or refractory non-Hodgkin's lymphoma, acute myeloid leukemia, acute lymphocytic leukemia, or chronic myelogenous leukemia. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with decitabine may kill more cancer cells.
This phase I trial is studying the side effects and best dose of sorafenib in treating patients with metastatic or unresectable solid tumors, multiple myeloma, or non-Hodgkin's lymphoma with or without impaired liver or kidney function. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Sorafenib may have different effects in patients who have changes in their liver or kidney function
This clinical trial studies the side effects and best dose of giving fludarabine and total-body irradiation (TBI) together followed by a donor stem cell transplant and cyclosporine and mycophenolate mofetil in treating human immunodeficiency virus (HIV)-positive patients with or without cancer. Giving low doses of chemotherapy, such as fludarabine, and TBI before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after the transplant may stop this from happening.
This randomized phase II trial studies how well giving tacrolimus and mycophenolate mofetil (MMF) with or without sirolimus works in preventing acute graft-versus-host disease (GVHD) in patients undergoing donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body-irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving MMF and tacrolimus with or without sirolimus after transplant may stop this from happening.
This phase I trial is studying the side effects and best dose of SB-715992 in treating patients with metastatic or unresectable solid tumors or Hodgkin's or non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells
This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.