Clinical Trials Logo

Stage IV Mantle Cell Lymphoma clinical trials

View clinical trials related to Stage IV Mantle Cell Lymphoma.

Filter by:

NCT ID: NCT00499811 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver Dysfunction

Start date: June 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.

NCT ID: NCT00458731 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Bevacizumab and Cediranib Maleate in Treating Patients With Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma

Start date: May 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.

NCT ID: NCT00433537 Completed - Clinical trials for Stage IV Mantle Cell Lymphoma

Combination Chemotherapy and Rituximab in Treating Patients With Untreated Mantle Cell Lymphoma

Start date: May 2007
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving rituximab together with combination chemotherapy and bortezomib works in treating patients with untreated mantle cell lymphoma. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin, vincristine, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or stopping them from dividing. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving rituximab together with combination chemotherapy and bortezomib may kill more cancer cells. Treatment consists of six agents: bortezomib (Vc), rituximab (R), cyclophosphamide (C), vincristine (V), doxorubicin (A), and dexamethasone (D) (VcR-CVAD).

NCT ID: NCT00408681 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease After Donor Stem Cell Transplant

Start date: June 2006
Phase: N/A
Study type: Interventional

RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.

NCT ID: NCT00348985 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

PXD101 and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas

Start date: March 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of PXD101 and bortezomib in treating patients with advanced solid tumors or lymphomas. PXD101 and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PXD101 may also cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving PXD101 together with bortezomib may kill more cancer cells.

NCT ID: NCT00343798 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

A Pilot Study to Evaluate the Co-Infusion of Ex Vivo Expanded Cord Blood Cells With an Unmanipulated Cord Blood Unit in Patients Undergoing Cord Blood Transplant for Hematologic Malignancies

Start date: April 2006
Phase: Phase 1
Study type: Interventional

This phase I multicenter feasibility trial is studying the safety and potential efficacy of infusing ex vivo expanded cord blood progenitors with one unmanipulated umbilical cord blood unit for transplantation following conditioning with fludarabine, cyclophosphamide and total body irradiation (TBI), and immunosuppression with cyclosporine and mycophenolate mofetil (MMF) for patients with hematologic malignancies. Chemotherapy, such as fludarabine and cyclophosphamide, and TBI given before an umbilical cord blood transplant stops the growth of leukemia cells and works to prevent the patient's immune system from rejecting the donor's stem cells. The healthy stem cells from the donor's umbilical cord blood help the patient's bone marrow make new red blood cells, white blood cells, and platelets. It may take several weeks for these new blood cells to grow. During that period of time, patients are at increased risk for bleeding and infection. Faster recovery of white blood cells may decrease the number and severity of infections. Studies have shown that counts are more likely to recover more quickly if increased numbers of cord blood cells are given with the transplant. We have developed a way of growing or "expanding" the number of cord blood cells in the lab so that there are more cells available for transplant. We are doing this study to find out whether or not giving these expanded cells along with one unexpanded cord blood unit is safe and if use of expanded cells can decrease the time it takes for white blood cells to recover after transplant. We will study the time it takes for blood counts to recover, which of the two cord blood units makes up the patient's new blood system, and how quickly immune system cells return

NCT ID: NCT00293345 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

3-AP and Gemcitabine in Treating Patients With Advanced Solid Tumors or Lymphoma

Start date: June 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the best dose of 3-AP and the side effects of giving 3-AP together with gemcitabine in treating patients with advanced solid tumors or lymphoma. Drugs used in chemotherapy, such as 3-AP and gemcitabine (GEM), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help gemcitabine kill more cancer cells by making the cells more sensitive to the drug. 3-AP may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT00275080 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

Start date: February 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with decitabine in treating patients with advanced solid tumors or relapsed or refractory non-Hodgkin's lymphoma, acute myeloid leukemia, acute lymphocytic leukemia, or chronic myelogenous leukemia. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with decitabine may kill more cancer cells.

NCT ID: NCT00118170 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Sorafenib in Treating Patients With Metastatic or Unresectable Solid Tumors, Multiple Myeloma, or Non-Hodgkin's Lymphoma With or Without Impaired Liver or Kidney Function

Start date: October 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of sorafenib in treating patients with metastatic or unresectable solid tumors, multiple myeloma, or non-Hodgkin's lymphoma with or without impaired liver or kidney function. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Sorafenib may have different effects in patients who have changes in their liver or kidney function

NCT ID: NCT00112593 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Fludarabine and Total-Body Irradiation Followed By Donor Stem Cell Transplant and Cyclosporine and Mycophenolate Mofetil in Treating HIV-Positive Patients With or Without Cancer

Start date: November 1999
Phase: N/A
Study type: Interventional

This clinical trial studies the side effects and best dose of giving fludarabine and total-body irradiation (TBI) together followed by a donor stem cell transplant and cyclosporine and mycophenolate mofetil in treating human immunodeficiency virus (HIV)-positive patients with or without cancer. Giving low doses of chemotherapy, such as fludarabine, and TBI before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after the transplant may stop this from happening.