View clinical trials related to Stage IV Lung Cancer AJCC v8.
Filter by:This phase II trial tests whether CD105/Yb-1/SOX2/CDH3/MDM2-polyepitope plasmid DNA vaccine (STEMVAC) works to shrink tumors in patients with stage IV non-small cell lung cancer. STEMVAC targets specific immunogenic proteins that help lung cancer cells to grow. STEMVAC is made up of deoxyribonucleic acid (DNA), which is a natural substance in every living organism. DNA acts like a blueprint that tells all the cells in your body how to function. The DNA used in this study contains instructions for your body to produce parts of the 5 proteins the investigators identified (CDH3, CD105, YB-1, MDM2 and SOX2). STEMVAC is given with granulocyte-macrophage colony stimulating factor (GM-CSF) which is being used as an adjuvant to help create a stronger immune response. Giving STEMVAC with GM-CSF to patients while on maintenance therapy for non-small cell lung cancer (NSCLC) may help activate certain immune cells to recognize and kill lung cancer cells.
This phase I trial studies the side effects and best dose of PBF-1129 in combination with nivolumab in treating patients with non-small cell lung cancer that has come back (recurrent) or spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as PBF-1129 and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This clinical trial tests whether a video intervention improves patient understanding of tumor genomic testing in patients with cancer that has spread to other parts of the body (metastatic). Measuring how the video intervention affects patient understanding of tumor genomic testing in patients with metastatic cancer may help doctors provide patient-centered care by effectively communicating the importance of tumor genomic testing.
This clinical trial develops and tests a model of family caregiver education focused on the role of underserved family caregivers as providers of complex care in the home. Cancer patients have symptoms from their cancer or treatment and are then supported by family caregivers at home with tasks requiring technical skill. Family caregivers are often asked to provide complex care whether it involves decisions about managing symptoms or providing technical care for ports/pumps, tubes, or devices. Family caregivers often are not given enough information on how to provide care for patients at home needing complex care. The results from this study may help researchers refine and improve the intervention for caregivers through future research for caregivers on a much larger scale.
This phase Ib trial tests the side effects and best dose of minnelide when given together with osimertinib for the treatment of non-small cell lung cancer that has spread to other places in the body (advanced) and has a change (mutation) in a gene called EGFR. Minnelide is a biologically inactive compound that can be broken down in the body to produce a drug that rapidly releases the active compound triptolide when exposed to phosphatases in the bloodstream. Sometimes, mutations in the EGFR gene cause EGFR proteins to be made in higher than normal amounts on some types of cancer cells. This causes cancer cells to divide more rapidly. Osimertinib may stop the growth of tumor cells by blocking EGFR that is needed for cell growth in this type of cancer. Minnelide and osimertinib may work better in treating patients with EGFR mutant advanced non-small cell lung cancer.
This phase II trial studies how well hypofractionated radiation therapy after durvalumab and chemotherapy works to shrink tumors in patients with stage IV extensive stage small cell lung cancer. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects than a conventionally fractionated radiation course. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as carboplatin, cisplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding radiation after chemo and immunotherapy may help improve cancer control.
This phase II/III Lung-MAP trial studies how well immunotherapy treatment with N-803 (ALT-803) and pembrolizumab working in treating patients with non-small cell lung cancer that has spread to other places in the body (advanced). Natural killer cells, part of our immune system, are always on alert and ready to defend our bodies from many kinds of infection or rogue cells, such as those that cause cancer. N-803 (ALT-803) may activate natural killer cells so that they can stimulate an immune response to help fight cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving N-803 (ALT-803) and pembrolizumab may help shrink and stabilize lung cancer or prevent it from returning.
This phase II trial tests whether poziotinib and ramucirumab work to shrink tumors in patients with EGFR Exon 20 gene mutant stage IV non-small cell lung cancer. Poziotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ramucirumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving poziotinib and ramucirumab may help to control the disease.
This phase I/II trial studies the side effects of sapanisertib and nivolumab and to see how well they work in treating patients with stage I-IV non-small cell lung cancer whose disease got worse on previous PD-1/PD-L1 inhibitor therapy. Sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving sapanisertib and nivolumab may help to control the disease.
This phase Ib/II trial studies the side effects and best dose of aurora A kinase inhibitor LY3295668 when given together with osimertinib in patients with EGFR-mutant non-squamous non-small cell lung cancer that has spread to other places in the body (advanced or metastatic). Aurora A kinase inhibitor LY3295668 and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving aurora A kinase inhibitor LY3295668 in combination with osimertinib may help control EGFR-mutant non-squamous non-small cell lung cancer.