View clinical trials related to Stage IIIC Skin Melanoma.
Filter by:This randomized pilot clinical trial studies melanoma antigen recognized by T-cells 1 (MART-1) antigen with or without toll-like receptor 4 (TLR4) agonist glucopyranosyl lipid A-stable oil-in-water emulsion (GLA-SE) in treating patients with stage II-IV melanoma that has been removed by surgery. Vaccines made from MART-1a peptide or antigen may help the body build an effective immune response to kill tumor cells. Giving TLR4 agonist GLA-SE with MART-1 antigen may help increase the immune response to MART-1a antigen.
This pilot clinical trial studies booster vaccination in preventing disease recurrence in previously vaccinated patients with melanoma that has been removed by surgery. Vaccines made from peptides may help the body build an effective immune response to kill tumor cells. Giving booster vaccinations may make a stronger immune response and prevent or delay the recurrence of cancer.
This pilot phase II trial studies how well epacadostat and vaccine therapy work in treating patients with stage III-IV melanoma. Epacadostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vaccines made from peptides and antigens may help the body build an effective immune response to kill tumor cells. Giving epacadostat with vaccine therapy may be an effective treatment for advanced melanoma.
This pilot clinical trial studies intravital microscopy for identifying tumor vessels in patients with stage IA-IV melanoma that is being removed by surgery. New imaging procedures, such as intravital microscopy, may determine the extent of melanoma.
This phase I trial studies the side effects and best dose of vaccine therapy in treating patients with stage III-IV melanoma that has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced). Vaccines made from peptides or antigens may help the body build an effective immune response to kill tumor cells.
This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.
This pilot clinical trial studies recombinant interferon alfa-2b in treating patients with melanoma. Recombinant interferon alfa-2b may interfere with the growth of tumor cells and slow the growth of melanoma
This phase I clinical trial is studying the side effects and best dose of giving gamma-secretase inhibitor RO4929097 and cediranib maleate together in treating patients with advanced solid tumors. Gamma-secretase inhibitor RO4929097 and cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cediranib maleate also may stop the growth of tumor cells by blocking blood flow to the tumor.
The purpose of this study is to assess the safety, efficacy, and immunological response to the study product, TLI, as an adjuvant therapy in subjects with Stage III Melanoma. Normal cells in the body have an established lifespan. Cancer cells on the other hand have the ability to continue to divide into new cells indefinitely. More than 85% of cancer has this ability because of an enzyme found in the cancer cell. The Investigational Product, Transgenic Lymphocyte Immunization (TLI), is aimed at helping the immune system target this enzyme found in most cancerous cells. Subjects who meet all inclusion and exclusion criteria will undergo a leukapheresis in which white blood cells will be collected and used to manufacture their own personal study product. Subjects will receive 3 infusions of TLI roughly 1 month apart and will be followed over a 2 year period with routine laboratory draws, computed tomography (CT) scans and physical exams.
This phase II trial is studying how well giving temsirolimus together with bevacizumab works in treating patients with stage III or stage IV malignant melanoma. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for their growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of malignant melanoma by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.