Clinical Trials Logo

Stage IIIA Lung Cancer AJCC v8 clinical trials

View clinical trials related to Stage IIIA Lung Cancer AJCC v8.

Filter by:

NCT ID: NCT04751747 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Adaptive Radiation Planning for the Reduction of Radiation-Induced Toxicity in Patients With Stage II-IV Non-small Cell Lung Cancer

Start date: February 11, 2021
Phase: N/A
Study type: Interventional

This phase II trial studies the effect of adaptive radiation planning in reducing side effects associated with radiation treatment and immunotherapy in patients with stage II-IV non-small cell lung cancer. Prior to radiation, patients undergo simulation, where they are positioned on the treatment table in a manner that can be reproduced each time they receive treatment in order to reach the tumor exactly at the same spot each time. However, a patient's tumor may shrink as they receive radiation, exposing healthy tissue to radiation as well. Adaptive radiation planning involves re-designing a treatment plan at set intervals. The purpose of this study is to see whether establishing set time points through adaptive radiation planning, regardless of whether the doctor notices a significant decrease in tumor size, will reduce some of the side effects associated with radiation treatment and immunotherapy.

NCT ID: NCT04505267 Recruiting - Clinical trials for Stage III Lung Cancer AJCC v8

NBTXR3 and Radiation Therapy for the Treatment of Inoperable Recurrent Non-small Cell Lung Cancer

Start date: February 10, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the best dose and side effects of NBTXR3 when given together with radiation therapy for the treatment of non-small cell lung cancer that cannot be treated by surgery (inoperable) and has come back (recurrent). NBTXR3 is a radio-enhancer designed to increase the radiotherapy energy dose deposition inside tumor cells. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving NBTXR3 and radiation therapy may increase radiation-dependent tumor cell killing without increasing the radiation exposure of healthy surrounding tissues.

NCT ID: NCT04430725 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Microwave Ablation or Wedge Resection for the Treatment of Lung, Sarcoma and Colorectal Lesions, ALLUME Study

Start date: August 7, 2019
Phase:
Study type: Observational

This study compares the outcomes and safety of two standard treatment options called microwave ablation and surgical wedge resection in patients with non-small cell lung cancer, sarcoma and colorectal cancer that has spread to other parts of the body (metastatic). Microwave ablation is designed to kill tumor cells by heating the tumor until the tumor cells die. A wedge resection is a procedure that involves the surgical removal of a small, wedge-shaped piece of lung tissue to remove a small tumor or to diagnose lung cancer. Comparing these two treatment options may help researchers learn which method works better for the treatment of non-small cell lung cancer, metastatic sarcoma, and metastatic colorectal cancer.

NCT ID: NCT04428905 Recruiting - Clinical trials for Stage III Lung Cancer AJCC v8

Self-Management Survivorship Care in Stage I-III Non-small Cell Lung Cancer or Colorectal Cancer

Start date: July 11, 2020
Phase: N/A
Study type: Interventional

This phase III trial studies how well a telehealth self-management program works in improving survivorship care and outcomes in stage I-III non-small cell lung cancer or colorectal cancer survivors. Survivor self-management program focuses on coaching patients on follow-up care after cancer treatments. Participating in the program may improve knowledge and confidence about follow-up care, communication with cancer care and primary care doctors, and quality of life after cancer treatment in non-small cell lung cancer or colorectal cancer survivors.

NCT ID: NCT04298606 Recruiting - Clinical trials for Chronic Obstructive Pulmonary Disease

A Vaccine (CIMAvax-EGF) for the Prevention of Lung Cancer Development or Recurrence

Start date: November 22, 2021
Phase: Early Phase 1
Study type: Interventional

This early phase I trial studies the side effects of a vaccine called CIMAvax-EGF and to see how well it works in preventing lung cancer from developing in patients at high risk for lung cancer or coming back (recurrence) in stage IB-IIIA non-small cell lung cancer survivors. In many cancers such as lung cancer, there is a protein receptor called EGFR (epidermal growth factor receptor) that is overexpressed within these cancers. Activation of EGFR has shown to lead to tumor growth and development. Previous studies have indicated that EGFR activation is present in the airways of cancer-free subjects as well. CIMAvax-EGF vaccine works by causing the body to make antibodies against EGF that is being produced that could be possibly driving the risk for developing cancer.

NCT ID: NCT04267848 Recruiting - Clinical trials for Stage IIIB Lung Cancer AJCC v8

Testing the Addition of a Type of Drug Called Immunotherapy to the Usual Chemotherapy Treatment for Non-Small Cell Lung Cancer, ALCHEMIST Trial

Start date: June 16, 2020
Phase: Phase 3
Study type: Interventional

This phase III ALCHEMIST trial tests the addition of pembrolizumab to usual chemotherapy for the treatment of stage IIA, IIB, IIIA or IIIB non-small cell lung cancer that has been removed by surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as cisplatin, pemetrexed, carboplatin, gemcitabine hydrochloride, and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab with usual chemotherapy may help increase survival times in patients with stage IIA, IIB, IIIA or IIIB non-small cell lung cancer.

NCT ID: NCT04073745 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Single Fraction Stereotactic Body Radiation Therapy After Surgery in Treating Patients With Non-small Cell Lung Cancer

Start date: November 6, 2019
Phase: Phase 1
Study type: Interventional

This trial studies the side effects of single fraction stereotactic body radiation therapy after surgery in treating patients with non-small cell lung cancer. Standard radiation for lung cancer involves delivering small doses of daily radiation for several weeks. However, this technique has resulted in inferior outcomes compared to surgery and is associated with damage to surrounding normal lung. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. Giving stereotactic body radiation therapy in fewer treatment sessions (single fraction) may kill tumor cells and cause less damage to normal tissue.

NCT ID: NCT04067830 Recruiting - Clinical trials for Stage IIIB Lung Cancer AJCC v8

Respiratory Muscle Training Before Surgery in Preventing Lung Complications in Patients With Stage I-IIIB Lung Cancer

Start date: March 20, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well respiratory muscle training before surgery works in preventing lung complications after surgery in patients with stage I-IIIB lung cancer. Patients with lung cancer who choose to undergo surgical resection often have complications after surgery such as pneumonia, unplanned intubations, difficulty breathing and reduced physical functioning, and increased medical costs and a reduced quality of life. Improving pre-surgical pulmonary health through respiratory muscle training may improve respiratory muscle strength, response to surgery, and quality of life after surgery in patients with lung cancer.

NCT ID: NCT03948100 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Dyadic Yoga Intervention in Improving Physical Performance and Quality of Life in Patients With Stage I-IV Non-small Cell Lung or Esophageal Cancer Undergoing Radiotherapy and Their Caregivers

Start date: December 20, 2018
Phase: N/A
Study type: Interventional

This trial studies how well dyadic yoga intervention works in improving physical performance and quality of life in patients with stage I-IV non-small cell lung or esophageal cancer undergoing radiotherapy and their caregivers. Dyadic yoga intervention may help to improve physical function, fatigue, sleep difficulties, depressive symptoms, and overall quality of life for patients with non-small cell lung cancer and/or their caregivers.

NCT ID: NCT03830918 Recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Niraparib, Temozolomide and Atezolizumab in Treating Patients With Advanced Solid Tumors and Extensive-Stage Small Cell Lung Cancer With a Complete or Partial Response to Platinum-Based First-Line Chemotherapy

Start date: March 6, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/II trial studies the best dose of temozolomide and how well it works with niraparib and atezolizumab in treating patients with solid tumors that have spread to other places in the body (advanced) and extensive-stage small cell lung cancer with a complete or partial response to platinum-based first-line chemotherapy. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Niraparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving temozolomide, niraparib and atezolizumab may work better in treating patients with advanced solid tumors and extensive-stage small cell lung cancer.