View clinical trials related to Stage IIIA Breast Cancer AJCC v7.
Filter by:This randomized clinical trial studies an integrative oncology (making changes in lifestyle and behavior) program in improving cancer-related outcomes in patients with stage II or III breast cancer undergoing radiation therapy. An integrative oncology program consisting of dietary recommendations, physical activity, stress management, social support, and control of environmental contaminants may modify cancer-related biological processes, influence long-term treatment results, and improve the quality of life of patients.
This randomized phase III trial studies docetaxel, carboplatin, trastuzumab, and pertuzumab with estrogen deprivation to see how they work compared to docetaxel, carboplatin, trastuzumab, and pertuzumab without estrogen deprivation in treating patients with hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-positive breast cancer that is operable or has spread from where it started to nearby tissue or lymph nodes (locally advanced). Drugs used in chemotherapy, such as docetaxel, carboplatin, trastuzumab, and pertuzumab, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Estrogen can cause the growth of breast cancer cells. Hormone therapy using goserelin acetate and aromatase inhibition therapy may fight breast cancer by blocking the use of estrogen by the tumor cells. Radiation therapy uses high energy x rays to kill tumor cells. Giving combination chemotherapy and radiation therapy with or without hormone therapy may be an effective treatment for hormone receptor-positive, HER2-positive, operable or locally advanced breast cancer.
This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.
This phase I trial studies the side effects and best dose of bevacizumab and temsirolimus alone or in combination with valproic acid or cetuximab in treating patients with a malignancy that has spread to other places in the body or other disease that is not cancerous. Immunotherapy with bevacizumab and cetuximab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether bevacizumab and temsirolimus work better when given alone or with valproic acid or cetuximab in treating patients with a malignancy or other disease that is not cancerous.
This phase II trial studies the side effects of nab-paclitaxel in treating older patients with breast cancer that has spread from where it started to nearby tissue or lymph nodes (locally advanced) or to other places in the body (metastatic). Drugs used in chemotherapy, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This randomized phase III clinical trial studies chemotherapy with or without trastuzumab after surgery to see how well they work in treating women with invasive breast cancer. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving chemotherapy after surgery may kill more tumor cells. Monoclonal antibodies, such as trastuzumab, can block cancer growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether combination chemotherapy is more effective with trastuzumab in treating breast cancer.
This randomized phase II trial studies how well paclitaxel with or without carboplatin and/or bevacizumab followed by doxorubicin and cyclophosphamide works in treating patients with breast cancer that can be removed by surgery. Drugs used in chemotherapy, such as paclitaxel, carboplatin, doxorubicin, and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Bevacizumab may stop the growth of tumor cells by blocking blood flow to the tumor. Giving chemotherapy together with bevacizumab before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
This randomized phase III trial studies paclitaxel and trastuzumab with or without lapatinib to see how well they work in treating patients with stage II or stage III breast cancer that can be removed by surgery. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as trastuzumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Lapatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving paclitaxel with trastuzumab and/or lapatinib before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. It is not yet known which regimen is more effective in treating patients with breast cancer.
This phase I trial studies the side effects and best dose of veliparib when given together with irinotecan hydrochloride in treating patients with cancer that has spread to other parts of the body or that cannot be removed by surgery. Irinotecan hydrochloride can kill cancer cells by damaging the deoxyribonucleic acid (DNA) that is needed for cancer cell survival and growth. Veliparib may block proteins that repair the damaged DNA and may help irinotecan hydrochloride to kill more tumor cells. Giving irinotecan hydrochloride together with veliparib may kill more cancer cells.