View clinical trials related to Stage II Pancreatic Cancer.
Filter by:Sorafenib may stop the growth of tumor cells by stopping blood flow to the tumor and by blocking the enzymes necessary for their growth. Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving sorafenib with gemcitabine may kill more tumor cells. This phase II trial is studying how well giving sorafenib together with gemcitabine works in treating patients with locally advanced or metastatic pancreatic cancer.
This randomized phase II trial is studying bevacizumab, gemcitabine, and cetuximab to see how well they work compared to bevacizumab, gemcitabine, and erlotinib in treating patients with advanced pancreatic cancer. Monoclonal antibodies, such as cetuximab and bevacizumab, can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop tumor cells from dividing so they stop growing or die. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. Combining bevacizumab and gemcitabine with either cetuximab or erlotinib may kill more tumor cells.
This randomized phase III trial is studying gemcitabine and bevacizumab to see how well they work compared to gemcitabine alone in treating patients with locally advanced or metastatic pancreatic cancer. Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop tumor cells from dividing so they stop growing or die. Monoclonal antibodies such as bevacizumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Bevacizumab may also stop the growth of tumor cells by stopping blood flow to the tumor. Combining gemcitabine with bevacizumab may kill more tumor cells. It is not yet known whether gemcitabine is more effective with or without bevacizumab in treating pancreatic cancer.
This clinical trial is studying the amount of EF5 and motexafin lutetium present in tumor cells and/or normal tissues of patients with abdominal (such as ovarian, colon, or stomach cancer) or non-small cell lung cancer. EF5 may be effective in measuring oxygen in tumor tissue. Photosensitizing drugs such as motexafin lutetium are absorbed by tumor cells and, when exposed to light, become active and kill the tumor cells. Knowing the level of oxygen in tumor tissue and the level of motexafin lutetium absorbed by tumors and normal tissue may help predict the effectiveness of anticancer therapy
Drugs used in chemotherapy, such as CCI-779, work in different ways to stop tumor cells from dividing so they stop growing or die. This phase II trial is studying how well CCI-779 works in treating patients with locally advanced or metastatic pancreatic cancer
This phase I trial is studying the side effects and best dose of erlotinib when given together with gemcitabine and radiation therapy in treating patients with locally advanced unresectable pancreatic cancer. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining erlotinib with gemcitabine may make the tumor cells more sensitive to radiation therapy and may kill more tumor cells.
Drugs used in chemotherapy work different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Flavopiridol may make the tumor cells more sensitive to radiation therapy. Phase I trial to study the effectiveness of combining flavopiridol with radiation therapy followed by gemcitabine hydrochloride in treating patients who have locally advanced, unresectable pancreatic cancer.
Phase I trial to study the effectiveness of combining UCN-01 with gemcitabine in treating patients who have unresectable or metastatic pancreatic cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. UCN-01 may help gemcitabine kill more cancer cells by making tumor cells more sensitive to the drug
Phase I trial to study the effectiveness of erlotinib in treating patients who have metastatic or unresectable solid tumors and liver or kidney dysfunction. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor
Phase I trial to study the effectiveness of vaccine therapy with or without sargramostim in treating patients who have advanced or metastatic cancer. Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may make tumor cells more sensitive to the vaccine and may kill more tumor cells