Clinical Trials Logo

Splenic Marginal Zone Lymphoma clinical trials

View clinical trials related to Splenic Marginal Zone Lymphoma.

Filter by:

NCT ID: NCT00720135 Completed - Clinical trials for Recurrent Grade 1 Follicular Lymphoma

Fusion Protein Cytokine Therapy After Rituximab in Treating Patients With B-Cell Non-Hodgkin Lymphoma

Start date: January 2008
Phase: Phase 1
Study type: Interventional

RATIONALE: Biological therapies, such as fusion protein cytokine therapy, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving fusion protein cytokine therapy together with rituximab may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of fusion protein cytokine therapy when given after rituximab in treating patients with B-cell non-Hodgkin lymphoma.

NCT ID: NCT00711828 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Rituximab, Cyclophosphamide, Bortezomib, and Dexamethasone in Treating Patients With Relapsed or Refractory Low-Grade Follicular Lymphoma, Waldenstrom Macroglobulinemia, or Mantle Cell Lymphoma

Start date: August 2008
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving rituximab and cyclophosphamide together with bortezomib and dexamethasone (R-CyBor-D) works in treating patients with relapsed or refractory low-grade follicular lymphoma, Waldenstrom macroglobulinemia, or mantle cell lymphoma. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cyclophosphamide and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving rituximab and bortezomib together with combination chemotherapy may kill more cancer cells.

NCT ID: NCT00621452 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Genetically Engineered Lymphocytes, Cyclophosphamide, and Aldesleukin in Treating Patients With Relapsed or Refractory Mantle Cell Lymphoma or Indolent B-Cell Non-Hodgkin Lymphoma

Start date: August 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects of giving genetically engineered lymphocytes together with cyclophosphamide and aldesleukin in treating patients with relapsed or refractory mantle cell lymphoma or indolent B-cell non-Hodgkin lymphoma. Placing a gene that has been created in the laboratory into white blood cells may make the body build an immune response to kill cancer cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Aldesleukin may stimulate the white blood cells to kill lymphoma cells. Giving genetically engineered lymphocytes together with cyclophosphamide and aldesleukin may be an effective treatment for mantle cell lymphoma and B-cell non-Hodgkin lymphoma

NCT ID: NCT00608361 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery

Start date: October 2008
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT00601718 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Vorinostat, Rituximab, Ifosfamide, Carboplatin, and Etoposide in Treating Patients With Relapsed or Refractory Lymphoma or Previously Untreated T-Cell Non-Hodgkin Lymphoma or Mantle Cell Lymphoma

Start date: December 2007
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studying the side effects and best dose of vorinostat when given together with rituximab, ifosfamide, carboplatin, and etoposide and to see how well they work in treating patients with relapsed or refractory lymphoma or previously untreated T-cell non-Hodgkin lymphoma or mantle cell lymphoma. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with rituximab and combination chemotherapy may kill more cancer cells

NCT ID: NCT00566332 Completed - Clinical trials for Splenic Marginal Zone Lymphoma

Trial Comparing Chlorambucil to Fludarabine in Patients With Advanced Waldenström Macroglobulinemia

Start date: June 2001
Phase: Phase 3
Study type: Interventional

Waldenström's macroglobulinaemia (WM) is a lymphoproliferative disorder characterized by a monoclonal IgM paraprotein and morphological evidence of lymphoplasmacytic lymphoma: the cells are IgM+, IgD+, CD19+ and CD20+ but usually CD5-, CD10- and CD23-. The treatment efficacy is difficult to assess because of the lack of clear diagnostic criteria , good response criteria, and of randomized trials. The actual treatment is Chlorambucil, an alkylating agent. A purine analogue such as Fludarabine has proven its efficacy on 30 % to 80 % as first line therapy This study is a phase II b open, prospective, international multicenter trial (England, Dr Johnson, Dr Catovsky, Australia: Dr Seymour) promoted by the French Cooperative Group on Chronic Lymphoid Leukemia in untreated WM, or closely related disorders ( Lymphoplasmacytic lymphoma or splenic marginal zone lymphoma). 366 patients must be included, among them 180 patients in France. Patients will be stratified according to the lymphoproliferative disorder. The patients will receive Chlorambucil by oral route for 10 days every 28 days (12 cycles) (8 MG/M², 6 MG/M² if patient is more than 75 years old) or Fludarabine by oral route for 5 days every 28 days (6 cycles) (40MG/M², 30 MG/M² if patient is more than 75 years old). The primary objective is to compare the efficacy (response rate) of Chlorambucil to Fludarabine in previously untreated patients. The secondary objectives are the duration of response, the improvement of hematological parameters, the toxicity, the quality of life, the event free survival and the overall survival.

NCT ID: NCT00536601 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

High-Dose Chemotherapy With or Without Total-Body Irradiation Followed by Autologous Stem Cell Transplant in Treating Patients With Hematologic Cancer or Solid Tumors

Start date: June 29, 2006
Phase: N/A
Study type: Interventional

This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.

NCT ID: NCT00499811 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver Dysfunction

Start date: June 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.

NCT ID: NCT00458731 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Bevacizumab and Cediranib Maleate in Treating Patients With Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma

Start date: May 2007
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.

NCT ID: NCT00438880 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Agatolimod Sodium, Rituximab, and Yttrium Y 90 Ibritumomab Tiuxetan in Treating Patients With Recurrent or Refractory Non-Hodgkin Lymphoma

Start date: October 2004
Phase: Phase 1/Phase 2
Study type: Interventional

RATIONALE: Biological therapies, such as agatolimod sodium, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Radiolabeled monoclonal antibodies, such as yttrium Y 90 ibritumomab tiuxetan, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Giving agatolimod sodium together with rituximab and yttrium Y 90 ibritumomab tiuxetan may kill more cancer cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of agatolimod sodium when given together with rituximab and yttrium Y 90 ibritumomab tiuxetan and to see how well it works in treating patients with recurrent or refractory non-Hodgkin lymphoma.