View clinical trials related to Splenic Marginal Zone Lymphoma.
Filter by:This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
This pilot phase 1-2 trial studies the side effects and best of dose ipilimumab when given together with local radiation therapy and to see how well it works in treating patients with recurrent melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. Monoclonal antibodies, such as ipilimumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Radiation therapy uses high energy x rays to kill cancer cells. Giving monoclonal antibody therapy together with radiation therapy may be an effective treatment for melanoma, non-Hodgkin lymphoma, colon, or rectal cancer. - The phase 1 component ("safety") of this study is ipilimumab 25 mg monotherapy. - The phase 2 component ("treatment-escalation") of this study is ipilimumab 25 mg plus radiation combination therapy.
This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them
The presence of a specific mutation in the gene known as B-RAF has been found in patients who have Hairy Cell Leukemia. In this study this specific mutation known as V600E will be ascertained in peripheral blood samples of patients who have this disease and in a group of patients who have a similar chronic lymphoproliferative conditions such as splenic marginal lymphoma. The finding of this specific mutation will help to verify or exclude the diagnosis of Hairy Cell Leukemia and determine whether patients are in remission.
This international multi-center, randomized, controlled, open-label study investigated the pharmacokinetics, pharmacodynamics, efficacy and safety of BCD-020 (INN: rituximab, CJSC Biocad) versus MabThera® (INN: rituximab, F. Hoffmann La Roche, Ltd.) both administered as a monotherapy of patients with indolent non-Hodgkin's lymphoma. Patients were randomized to receive 375 mg/m² BCD-020 as intravenous infusion once a week for 4 weeks or MabThera® at the same regimen.
This phase II trial studies the side effects and how well giving pegfilgrastim together with rituximab works in treating patients with untreated, relapsed, or refractory follicular lymphoma, small lymphocytic lymphoma (SLL), or marginal zone lymphoma (MZL). Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of therapy. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or tumor cancer-killing substances to them. Giving pegfilgrastim together with rituximab may kill more cancer cells
This phase I trial studies the side effects and best dose of monoclonal antibody therapy before stem cell transplant in treating patients with relapsed or refractory lymphoid malignancies. Radiolabeled monoclonal antibodies, such as yttrium-90 anti-CD45 monoclonal antibody BC8, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving radiolabeled monoclonal antibody before a stem cell transplant may be an effective treatment for relapsed or refractory lymphoid malignancies.
This phase I trial is studying the side effects and best dose of methoxyamine when given together with fludarabine phosphate in treating patients with relapsed or refractory hematologic malignancies. Drugs used in chemotherapy, such as methoxyamine and fludarabine phosphate, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving methoxyamine together with fludarabine phosphate may kill more cancer cells.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.