View clinical trials related to Splenic Marginal Zone Lymphoma.
Filter by:RATIONALE: Giving chemotherapy and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they will help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as filgrastim (G-CSF) and plerixafor, to the donor helps the stem cells move (mobilization) from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying giving plerixafor and filgrastim together for mobilization of donor peripheral blood stem cells before a peripheral blood stem cell transplant in treating patients with hematologic malignancies
RATIONALE: Lenalidomide may stop the growth of cancer by blocking blood flow to the tumor. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with rituximab may be an effective treatment for B-cell non-Hodgkin lymphoma. PURPOSE: This phase I/II trial is studying the side effects and best dose of lenalidomide when given together with rituximab as maintenance therapy in treating patients with B-cell non-Hodgkin lymphoma.
This phase II trial is studying how well rituximab works in preventing acute graft-versus-host disease (GVHD) in patients undergoing a donor stem cell transplant for hematologic cancer. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving a monoclonal antibody, rituximab, together with anti-thymocyte globulin, tacrolimus, and mycophenolate mofetil before and after the transplant may stop this from happening
This phase I trial is studying the side effects and best dose of giving PDX101 together with 17-AAG in treating patients with metastatic or unresectable solid tumors or lymphoma. PDX101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving PXD101 together with 17-AAG may kill more cancer cells.
This phase I/II trial is studying the side effects and best dose of fenretinide and to see how well it works when given together with rituximab in treating patients with B-cell non-Hodgkin lymphoma. Drugs used in chemotherapy, such as fenretinide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving fenretinide together with rituximab may kill more cancer cells.
This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin and bortezomib in treating patients with relapsed or refractory hematologic cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 17-N-allylamino-17-demethoxygeldanamycin together with bortezomib may kill more cancer cells.
This phase I trial is studying the side effects and best dose of SB-715992 in treating patients with metastatic or unresectable solid tumors or Hodgkin's or non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
Biological therapies, such as MDX-010, work in different ways to stimulate the immune system and stop cancer cells from growing. This phase I/II trial is studying the side effects and best dose of MDX-010 and to see how well it works in treating patients with recurrent or refractory B-cell non-Hodgkin's lymphoma.
This phase II trial is studying how well giving rituximab together with combination chemotherapy and 90-Yttrium ibritumomab tiuxetan works in treating patients with stage I or stage II lymphoma. Drugs used in chemotherapy, such as prednisone, cyclophosphamide, doxorubicin, and vincristine, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as rituximab and yttrium 90-Yttrium ibritumomab tiuxetan can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells. Combining a monoclonal antibody with combination chemotherapy and a radiolabeled monoclonal antibody may kill more cancer cells.
Drugs used in chemotherapy such as gemcitabine use different ways to stop cancer cells from dividing so they stop growing or die. Oblimersen may increase the effectiveness of gemcitabine by making cancer cells more sensitive to the drug. This phase I trial is studying the side effects and best dose of oblimersen and gemcitabine in treating patients with metastatic or unresectable solid tumors or lymphoma