View clinical trials related to Splenic Marginal Zone Lymphoma.
Filter by:This phase I trial studies the side effects and best dose of fludarabine (fludarabine phosphate) when given together with iodine I 131 tositumomab in treating older patients who are undergoing an autologous or syngeneic stem cell transplant for relapsed or refractory B-cell non-Hodgkin's lymphoma (NHL). Radiolabeled monoclonal antibodies, such as iodine I 131 tositumomab, can find cancer cells and carry cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. A peripheral stem cell transplant may be able to replace blood-forming cells that were destroyed by chemotherapy and radiation therapy. Giving iodine I 131 tositumomab together with fludarabine followed by autologous stem cell transplant may be an effective treatment for NHL
This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin and bortezomib in treating patients with relapsed or refractory hematologic cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 17-N-allylamino-17-demethoxygeldanamycin together with bortezomib may kill more cancer cells.
This phase I trial is studying the side effects and best dose of SB-715992 in treating patients with metastatic or unresectable solid tumors or Hodgkin's or non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells
This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with metastatic or unresectable solid tumors or lymphomas. Drugs used in chemotherapy, such as 17-DMAG, work in different ways to stop cancer cells from dividing so they stop growing or die
Biological therapies, such as MDX-010, work in different ways to stimulate the immune system and stop cancer cells from growing. This phase I/II trial is studying the side effects and best dose of MDX-010 and to see how well it works in treating patients with recurrent or refractory B-cell non-Hodgkin's lymphoma.
This phase II trial studies how well tacrolimus and mycophenolate mofetil works in preventing graft-versus-host disease in patients who have undergone total-body irradiation (TBI) with or without fludarabine phosphate followed by donor peripheral blood stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening.
This phase II trial is studying how well giving rituximab together with combination chemotherapy and 90-Yttrium ibritumomab tiuxetan works in treating patients with stage I or stage II lymphoma. Drugs used in chemotherapy, such as prednisone, cyclophosphamide, doxorubicin, and vincristine, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as rituximab and yttrium 90-Yttrium ibritumomab tiuxetan can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells. Combining a monoclonal antibody with combination chemotherapy and a radiolabeled monoclonal antibody may kill more cancer cells.
This phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.
Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Drugs used in chemotherapy, such as flavopiridol, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may increase the effectiveness of flavopiridol by making cancer cells more sensitive to the drug. Giving bortezomib together with flavopiridol may kill more cancer cells. This phase I trial is studying the side effects and best dose of bortezomib and flavopiridol in treating patients with recurrent or refractory indolent B-cell neoplasms.