Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02768103
Other study ID # N1772-P
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date May 2016
Est. completion date June 30, 2018

Study information

Verified date October 2022
Source VA Office of Research and Development
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The number of people in the United States who have survived SCI is estimated to be approximately 273,000 persons. Around 50% of the injuries are to the cervical spine resulting in tetraplegia. An important rehabilitation goal in this population is recovery of upper limb function, which could decrease medical costs and improve their quality of life. Re-establishing active grasp and pinch strength to the hand can be accomplished by surgeries that transfer the tendon of a strong muscle to restore strength to a paralyzed muscle, but the outcomes of the surgeries are variable. The investigators have demonstrated in an ongoing study, the functional gains after surgery can be improved with a focused therapy program to retrain the transferred muscle. The propose of this study is to examine the cortical mechanisms that drive successful muscle re-education after surgery. Understanding the neural (brain) activity associated with functional performance can help to predict who will respond to therapy and will guide evidence-based rehabilitation programs to improve upper limb function in tetraplegia.


Description:

Restoring upper limb function is rated among the highest priorities for individuals with tetraplegia. Re-establishing active grasp and pinch strength to the hand can be accomplished by tendon transfer procedures in which the tendon of a strong proximal muscle is surgically re-attached to the tendon of a paralyzed muscle. A common procedure to restore lateral (key) pinch is to transfer the distal tendon of one of the three elbow flexor muscles, the brachioradialis (Br) to the tendon of the paralyzed thumb flexor, the flexor pollicis longus (FPL). Recovery of functional pinch depends on how well the patient learns to activate the Br to flex the thumb through its new distal attachment, and also to control flexion at the elbow through its proximal attachment. The investigators' previous work shows that Br to FPL recipients do not activate the transferred Br fully and may not reach optimal functional status on their own or with traditional therapies. The investigators propose that participation in a postoperative task-based training program will drive cortical changes that impact functional (pinch) ability. Recent studies of individuals with cervical SCI show substantial cortical reorganization can occur after the injury, but neural substrates of motor learning after tendon transfer have not been studied. For these patients, very little is known about what functional brain changes accompany improved performance in response to additional intervention. The Br to FPL transfer alters the central feedback from the periphery and may permit new or adaptive neural pathways that can achieve greater functional use of the tendon transfer. Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) have become important tools for understanding plasticity in the neuromuscular system and for assessing the neural underpinnings of successful novel interventions. The objective of the proposed study is to identify the neural pattern that is associated with the best functional outcomes (highest pinch force) after Br to FPL transfer. The investigators will use fMRI and functional performance measures to find neural predictors and correlates of muscle re-education. That is, the investigators expect that successful postoperative muscle re-education will depend on increased cortical drive to the transferred Br in combination with new synergists, and this will be reflected in the neural imaging results. The purpose of the study is to evaluate neural activity from Br to FPL transfer recipients after conventional therapy and in response to an additional task-based training home program that aims to improve voluntary activation of the transferred Br in functional pinch tasks. The 10-week training program is under evaluation in RRD Pilot (B0583P) study and includes producing pinch force in different upper limb postures, biofeedback from a pinch dynamometer, and practicing selected pinch tasks. The investigators anticipate that increases in the amplitude and distribution of fMRI blood oxygen level dependent (BOLD) responses in sensorimotor cortices will underlie improved motor control post-surgically and following successful intervention to promote motor relearning. Specific Aims 1. Define the cortical representation of pre-training pinch function in SCI patients. The investigators will quantify the pattern (location, volume and intensity) of cortical activation associated with voluntary pinch in individuals who are one-year post Br to FPL tendon transfer surgery and a conventional therapy program. The investigators hypothesize (H1) greater volume and intensity of brain activation will correlate to better pinch function measured by pinch strength and the magnitude Br activation in pinch. Secondary analyses will determine if the location of the brain activation varies with pinch function (force) and specificity relative to voluntary elbow flexion. 2. Evaluate the cortical response to the task-based home therapy program. Correlates of task-based adaptation from pre- to post-training will be assessed using fMRI. H2: Greater activation (intensity and volume) in the primary motor cortex (M1) and sensory cortex will translate to increased voluntary activation of the transferred Br in pinch compared to elbow flexion. Task-based training outcome measures will include isometric pinch force magnitude, EMG quantification of Br activation in pinch and elbow flexion. 3. Determine neural signatures of surgical and training induced motor improvements. H3: After directed task-based training, brain activity during voluntary pinch will extend to adjacent areas (larger representation, greater activity), in sensorimotor brain areas, facilitating the ability to voluntarily increase the transferred Br activation in pinch. Secondary analyses will contrast size and activation level of brain changes with pinch activation in patients who receive training relative to non-impaired and non-surgical participants. The postoperative therapy protocols after tendon transfer procedures are not well defined, inconsistently applied, and lack evidence for their effectiveness. The study proposed here will investigate cortical change to assess outcome dependent plasticity. Thus, it may be possible to predict why some individuals do not re-train the transferred muscle as well as others. Establishing this relationship can lead to understanding the mechanisms of successful interventions and may identify brain based dynamics that could become the focus of future treatments (e.g. biofeedback, brain stimulation, etc.).


Recruitment information / eligibility

Status Completed
Enrollment 5
Est. completion date June 30, 2018
Est. primary completion date June 30, 2018
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Individuals with a clinical diagnosis of SCI cervical level 4-7, complete or incomplete injuries, who have completed conventional therapy and be at least 1-year post-surgery, are eligible for the study. - Participants must have had Br to FPL tendon transfer, be willing to participate in a 10 week exercise program, have adequate assistance or be independent in setting up exercise equipment (weight cuffs, functional tasks), and be available for two measurement sessions. - Women and minorities may be included in the study if they meet the inclusion criteria. - Non-Veteran participants who meet the selection criteria will be included to expand the available number of subjects. Exclusion Criteria: - More than one tendon transfer to the thumb to restore pinch but not if they have other tendon transfer procedures on the same upper limb. - Other exclusion criteria include pain that would limit their ability to perform the activities, spasticity in the upper limb, or spinal cord injury level above C4 or below C7 as their pattern of weakness will be substantially different. - Subjects who are participating in other research studies that include exercise programs for the upper limb or drug studies that affect their response to exercise will also be excluded.

Study Design


Related Conditions & MeSH terms


Intervention

Behavioral:
task-based training
The 10-week training program is designed to incorporate requirements of motor learning and includes activities that require learning to coordinate the transferred Br with other synergists by producing pinch force in different upper limb postures and in a range of pinch openings. Biofeedback using a pinch dynamometer in self-selected postures provides feedback and knowledge of progress to the participant. A task board is used for practicing task-specific activities such as opening and closing zippers, using a remote, an ATM card, a key, and an electrical plug and focuses on pinch in dynamic conditions that require modulating force and maintaining specific positions. The pinch-pin device requires closing pinch-pins (clothes pin) of variable resistance ranging from approximately 1 to 8 lbs and placing them on rods arranged at different positions in the work space.

Locations

Country Name City State
United States VA Palo Alto Health Care System, Palo Alto, CA Palo Alto California

Sponsors (1)

Lead Sponsor Collaborator
VA Office of Research and Development

Country where clinical trial is conducted

United States, 

References & Publications (1)

Johanson ME, Dairaghi CA, Hentz VR. Evaluation of a Task-Based Intervention After Tendon Transfer to Restore Lateral Pinch. Arch Phys Med Rehabil. 2016 Jun;97(6 Suppl):S144-53. doi: 10.1016/j.apmr.2015.12.032. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Pinch Force Pinch force recorded in newtons from force sensor mounted to a custom grip after 10 weeks home exercise program with task-based training
Primary Functional MRI BOLD Signal From Motor Cortex A block design with 10 seconds of rest alternating with 10 seconds of functional movement for 6 minutes will be followed. Participants have visual cues to instruct them in the timing and sequence of the tasks to be performed. Scan time to include a session of elbow flexion and a session for pinch is about 20 minutes. The main outcome measures for the fMRI data will be brain activation defined by intensity and cluster size in response to performing elbow flexion and pinch. Second level analyses will be mixed models effects derived using FSL FLAME for within subjects (pre to post intervention) as well as cross-sectional (non impaired vs. SCI-ns; SCI-ns vs. SCI+TT) individual models (with outlier deweighting and standard settings). after 10 week home exercise program with task-based training
Secondary Fine-wire Electromyography of Transferred Brachioradialis Muscle (to Paralyzed Thumb Flexor) EMG signal recorded from fine-wire (intramuscular) electrodes normalized to a maximum voluntary contraction after 10 week home exercise program with task-based training
See also
  Status Clinical Trial Phase
Recruiting NCT02574572 - Autologous Mesenchymal Stem Cells Transplantation in Cervical Chronic and Complete Spinal Cord Injury Phase 1
Recruiting NCT05941819 - ARC Therapy to Restore Hemodynamic Stability and Trunk Control in People With Spinal Cord Injury N/A
Completed NCT05265377 - Safety and Usability of the STELO Exoskeleton in People With Acquired Brain Injury and Spinal Cord Injury N/A
Recruiting NCT02331979 - Improving Bladder Function in SCI by Neuromodulation N/A
Completed NCT02777281 - Safe and Effective Shoulder Exercise Training in Manual Wheelchair Users With SCI N/A
Recruiting NCT02978638 - Electrical Stimulation for Continence After Spinal Cord Injury N/A
Completed NCT02161913 - Comparison of Two Psycho-educational Family Group Interventions for Persons With SCI and Their Caregivers N/A
Withdrawn NCT02237547 - Safety and Feasibility Study of Cell Therapy in Treatment of Spinal Cord Injury Phase 1/Phase 2
Completed NCT02262234 - Education Interventions for Self-Management of Pain Post-SCI: A Pilot Study Phase 1/Phase 2
Completed NCT01884662 - Virtual Walking for Neuropathic Pain in Spinal Cord Injury N/A
Completed NCT01642901 - Zoledronic Acid in Acute Spinal Cord Injury Phase 3
Terminated NCT02080039 - Electrical Stimulation of Denervated Muscles After Spinal Cord Injury N/A
Terminated NCT01433159 - Comparison of HP011-101 to Standard Care for Stage I-II Pressure Ulcers in Subjects With Spinal Cord Injury Phase 2
Completed NCT01471613 - Lithium, Cord Blood Cells and the Combination in the Treatment of Acute & Sub-acute Spinal Cord Injury Phase 1/Phase 2
Completed NCT01467817 - Obesity/Overweight in Persons With Early and Chronic Spinal Cord Injury (SCI) N/A
Completed NCT02149511 - Longitudinal Morphometric Changes Following SCI
Completed NCT01025609 - Dietary Patterns and Cardiovascular (CVD) Risk in Spinal Cord Injury (SCI) Factors In Individuals With Chronic Spinal Cord Injury
Completed NCT00663663 - Telephone Intervention for Pain Study (TIPS) N/A
Completed NCT01086930 - Early Intensive Hand Rehabilitation After Spinal Cord Injury Phase 3
Terminated NCT01005615 - Patterned Functional Electrical Stimulation (FES) Ergometry of Arm and Shoulder in Individuals With Spinal Cord Injury Phase 1/Phase 2