View clinical trials related to Spinal Cord Injury.
Filter by:The purpose of this study is to determine if bladder emptying can be achieved using stimulation of the sacral roots at certain frequencies. Neurogenic bladder dysfunction occurs after spinal cord injury (SCI). It is a problem that often includes detrusor-sphincter-dyssynergia (DSD), which results in difficulty emptying the bladder due to reflex urethral sphincter contractions during bladder emptying. Individuals with DSD typically require a catheter to empty their bladder. Some people have received an implanted device that stimulates the spinal nerves that connect to the bladder to empty the bladder without a catheter. However, this procedure usually also includes cutting nerves to stop unwanted reflexes. For this study, the investigators are testing a new stimulation pattern to determine if it can help achieve bladder emptying without having to cut nerves. Individuals with SCI who have received an implanted sacral root stimulation device are being asked to participate in this research to test the effectiveness of electrical stimulation to relax the urethral sphincter and promote bladder emptying.
Cardiovascular disease has become the leading cause of death in the spinal cord injury population. Increased reliance on the renin-angiotensin-aldosterone system (RAAS) is believed to decrease falls in blood pressure when moving from a laying down position to upright; however, findings in the general population link the RAAS with remodeling and restructuring of the arterial walls. Therefore, intervention to stabilize and normalize blood pressure should be a priority in individuals with spinal cord injury who have low blood pressure. Advances in stimulation on the skin of the spinal cord offer an approach to restore cardiovascular control and improve blood pressure regulation; however, electrode placement and stimulation parameters needed to increase blood pressure are not well understood. Therefore, the aim of the study is to identify placement of electrodes on the skin, and frequency and amplitude of the stimulation to regulate blood pressure.
In support of the long-term goal of developing new strategies to increase limb function after SCI, the objectives of this proposal are to: 1) Examine the behavioral and physiological effects of TESS on upper-limb muscles after cervical SCI; and 2) Maximize the recovery of reaching and grasping potential by using tailored TESS in a task-specific manner with motor training. Veterans with cervical spinal injuries and healthy volunteers will be recruited for this study.
Previous studies have shown that the neuroplasticity of the residual corticospinal fibers, the motor cortex and the spinal neurons plays an important role in the spontaneous functional recovery of people with neurological or musculoskeletal pathology. However, it is also possible to stimulate the neuroplasticity mechanisms of these structures through techniques aimed at rehabilitating different deficits (for example, motor function or sensitivity). In general, intervention programs are usually carried out, in most cases, using low-cost strategies such as therapeutic physical exercise programs. The objective of this study is to analyze the effectiveness of visual illusion therapies in combination with conventional exercises on the symptoms and signs related to incomplete spinal cord injury that affects the upper limb. The study will include the realization of three measurements that will be carried out one day before starting the program, one day after finishing it, and one month later (follow-up). The clinical assessment will be composed of the study of the following variables: Motor function and motor skills, Upper limb isometric force, Muscle activation, Muscle tone, Quality of life, Functionality. All interventions will last eight weeks and will be planned according to the availability of volunteers. In each session, it will be recorded if any type of adverse effect occurs. There will be four types of interventions: i. Visual Illusion (IV) and therapeutic exercise program (PE), ii.placebo and PE, iii. IV, iv. IV placebo.
Spinal cord injury is caused by any harmful process in the spinal cord, impairing its function, generating loss of muscle strength, impairing orthostatism and walking. In rehabilitation, some strategies are used to activate the muscles involved in the gait of these individuals, including the ergometric bicycle and the elliptical. Understanding the pattern of muscle activation generated by these methods is important to answer questions arising from clinical practice. Thus, we seek to verify the pattern of muscle activation of the vastus laterals, vastus medialis, gluteus medius, tibialis previous, rectus abdominis and paravertebral muscles during exercises with ellipticals and ergometric bicycle with and without electromyography biofeedback in individuals with spinal cord injury. Cross-sectional study of the type crossover. Individuals will sign the Informed Consent Form (FICF) and answer the identification form. They will be evaluated for functionality using the Functional Independence Measure (FIM), injury classification by the American Spinal Injury Association (ASIA) and muscle tone by the modified Ashworth scale. Later, they will be randomized to define the order of the devices in which they will be evaluated. Muscle activity will be verified with electromyography of the paravertebral, abdominal, vastus laterals, vastus medialis, gluteus medius and tibialis anterior unilateral muscles on the right side of individuals, comparing muscle activation during exercise cycling, elliptical and adding biofeedback in both modalities. The wash-out interval between each evaluation will be 7 days. We hypothesize that the elliptical with biofeedback will cause greater activation of the assessed muscles.
The Synchron Motor Neuroprosthesis (MNP) is intended to be used in subjects with severe motor impairment, unresponsive to medical or rehabilitative therapy and a persistent functioning motor cortex. The purpose of this research is to evaluate safety and feasibility. The MNP is a type of implantable brain computer interface which bypasses dysfunctional motor neurons. The device is designed to restore the transmission of neural signal from the cerebral cortex utilized for neuromuscular control of digital devices, resulting in a successful execution of non-mechanical digital commands.
Neurogenic osteoporosis is a common complication of spinal cord injury (SCI) that is associated with low impact bone fractures. It is concerning that more than 46,000 Veterans affected with SCI and are at risk of osteoporosis and possible low impact fractures. About fifty percent of all individuals with SCI will develop low impact fracture in their life time. The management of osteoporosis-related fractures can impose substantial economic burden on the health care system, the individual and the families. Previous studies did not succeed in reversing the process of bone loss after SCI. In the present pilot study, we will evaluate the effect of Neuromuscular Electrical Stimulation Resistance Training in combination with oral Vitamin D supplementation, on bone quality in Veterans with chronic SCI, using a randomized experimental design.
SCI results in higher incidence of heart disease and diabetes and heart disease is the most common cause of death. Chronic inflammation, deleterious changes in vascular structure and impaired glucose metabolism are risk factors that contribute to both heart disease and diabetes. While exercise can help reduce these risk factors, paralysis and impaired accessibility often precludes exercise in persons with SCI. New research in able-bodied persons demonstrates passive heating decreases inflammation and improves vascular function. Similar studies in persons with SCI suggest they may also have the same health benefits however these studies only investigated the impact of short term (one episode) passive heating (as opposed to repeated bouts). Repeated bouts of heat exposure will likely be required to impact chronic inflammation, but this has never been tested in persons with SCI. This study will test the impact of repeated bouts (3x/week) of passive heat stress over a longer term (8 weeks) on inflammation, metabolism and vascular function.
To construct and validate a software to recognize scar for patients with chronic SCI based on multimodal MRI.
Spinal cord injuries (SCI) are among the most debilitating conditions an individual can sustain with the estimates of SCI incidence in the United States at 12,000 new cases per year. The loss of innervation to the tissues muscle below the level of the lesion results in reduced physical activity which leads to an array of secondary complications including muscle atrophy, cardiovascular and metabolic disease, obesity and vascular dysfunction. This further leads to exercise intolerance, reduced quality of life and depression. Although current rehabilitative programs focus on improving muscle strength in this population, the efficacy of these programs is challenged by the injury related motor impairment, which limits the exercise intensity and subsequent positive muscular adaptations. Therefore, development of an exercise program that promotes maximal muscular adaptations to light intensity exercise could greatly improve the efficacy of rehabilitation in the SCI population and help restore functional capacity and quality of life for these individuals. Blood flow restriction (BFR) exercise has shown tremendous promise for improving muscle size and strength in a variety of healthy and clinical populations, however the benefits of BFR exercise for those with SCI has not been established. Thus, the purpose of this Merit proposal is to conduct a comprehensive study that explores the benefits and risks of BFR exercise in the incomplete SCI population. In general individuals with chronic incomplete SCI will be recruited to partake in two 8-week training periods (20 sessions) that involve traditional knee extension/flexion exercise or knee extension/flexion exercise with blood flow restriction. There will be a series of measurements before and after the 8-week intervention to look at changes in muscle and vascular function. Specific Aim 1 will determine how the 8-weeks of BFR exercise influenced muscle strength (Biodex isokinetic dynamometer), muscle cross sectional area and volume (CTscan) and fatigue resistance. Specific Aim 2 will determine how this novel 8-week training intervention impacts peripheral vascular function. Specifically, changes in nitric oxide mediated endothelial function will be determined through tests of flow mediated dilation, changes in endothelial function of the microvascular network will be determined through assessments of reactive hyperemia and changes in arterial stiffness will be determined through measurements of pulse wave velocity. Specific Aim 3 will focus on the safety of BFR exercise for the SCI population. Those with SCI are at greater risk for thrombosis and DVT compared to able bodied individuals. Although unlikely, the introduction of temporary blood stasis during BFR exercise might augment this risk. Thus, the third aim of this study will be to determine changes in innate immune activation and thrombosis risk. Specifically, blood will be collected at multiple timepoints throughout the training intervention and analyzed for hypoxia-inducible factor 1-alpha, neutrophil extra cellular traps (which act as prothrombotic scaffolds), neutrophil-platelet aggregates and inflammatory cytokines. Ultimately, if the improvements in muscle and vascular function following BFR resistance exercise is greater than the traditional resistance exercise often performed in rehabilitation settings, without increasing risk for DVT, it should be incorporated into the long-term rehabilitation programs for Veterans with SCI.