Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT03811301
Other study ID # BrainConnexion
Secondary ID
Status Active, not recruiting
Phase N/A
First received
Last updated
Start date November 21, 2017
Est. completion date August 27, 2023

Study information

Verified date November 2022
Source National Neuroscience Institute
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This study aims to evaluate the safety of a wireless implantable neurodevice microsystem in tetraplegic patients, as well as the efficacy of the electrodes for long-term recording of neural activities and the successful control of an external device.


Description:

The goal of this study is to develop a miniaturized wireless implantable neurodevice microsystem that records and transmits signals from the motor cortex of tetraplegic patients, bypassing the damaged nervous tissue, to control an external assistive device that restores some form of independence to patients in terms of communication or mobility.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 5
Est. completion date August 27, 2023
Est. primary completion date January 27, 2023
Accepts healthy volunteers No
Gender All
Age group 21 Years and older
Eligibility Inclusion Criteria: 1. 21 years old and older 2. Tetraparesis 3. Written informed consent obtained from the patient or legal representative (in the event where the patient is unable to provide consent) prior to entry into the study in accordance with local EC/IRB regulations and/or other application regulations for surrogate consent. 4. Able to perform the pre-operation Brain Computer Interface training as judged by the research team. Exclusion Criteria: 1. Significant medical co-morbidities e.g. cardiac disease 2. Bleeding disorders 3. Any contraindication to surgery 4. Other concomitant intracranial pathologies 5. History of seizures or epilepsy disorder 6. Complications of coagulopathy 7. Surgically unfit 8. Significant psychological issues e.g. Depression 9. Poor psychological support 10. Pregnancy 11. No means of communication 12. Any disease, in the opinion of the Investigator, that is unstable or which could jeopardise the safety of the patient If applicable, psychological assessment may be performed prior to selection as the implantation process will be a long a stressful event, requiring a significant degree of patient cooperation and resilience.

Study Design


Intervention

Device:
BrainConnexion
A 4.4mm by 4.2mm electrode array is placed onto the surface of the motor cortex which is then connected to a miniaturized neural recording microsystem that transmits signals wirelessly to control an external assistive device. Neural signals are recorded at least once every week for 12 months or longer.

Locations

Country Name City State
Singapore National Neuroscience Institute Singapore

Sponsors (5)

Lead Sponsor Collaborator
National Neuroscience Institute Institute for Infocomm Research, Institute of Microelectronics, Institute of Molecular and Cell Biology, Nanyang Technological University

Country where clinical trial is conducted

Singapore, 

References & Publications (20)

Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, Liu C, Andersen RA. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015 May 22;348(6237):906-10. doi: 10.1126/science.aaa5417. — View Citation

Cheng, M. Y., Je, M., Tan, K. L., et al. (2013). A low-profile three-dimensional neural probe array using a silicon lead transfer structure. J Micromechanics Microengineering, 23(9), 095013. doi:10.1088/0960-1317/23/9/095013.

Cheng, M. Y., Yao, L., Tan, K. L., Lim, R., Li, P., & Chen, W. (2014). 3D probe array integrated with a front-end 100-channel neural recording ASIC. J Micromechanics Microengineering, 24(12), 125010. doi:10.1088/0960-1317/24/12/125010.

Christopher and Dana Reeve Foundation. Christopher and Dana Reeve Foundation. https://www.christopherreeve.org/. Published 2016.

Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17. — View Citation

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076. — View Citation

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970. — View Citation

Lee, K., Singh, A., He, J., Massia, S., Kim, B., & Raupp, G. (2004). Polyimide based neural implants with stiffness improvement. Sensors Actuators B Chem,102(1), 67-72. doi: 10.1016/j.snb.2003.10.018.

Libedinsky C, So R, Xu Z, Kyar TK, Ho D, Lim C, Chan L, Chua Y, Yao L, Cheong JH, Lee JH, Vishal KV, Guo Y, Chen ZN, Lim LK, Li P, Liu L, Zou X, Ang KK, Gao Y, Ng WH, Han BS, Chng K, Guan C, Je M, Yen SC. Independent Mobility Achieved through a Wireless Brain-Machine Interface. PLoS One. 2016 Nov 1;11(11):e0165773. doi: 10.1371/journal.pone.0165773. eCollection 2016. — View Citation

Liu X, Zhou J, Wang C, et al. An Ultralow-Voltage Sensor Node Processor With Diverse Hardware Acceleration and Cognitive Sampling for Intelligent Sensing. IEEE Trans Circuits Syst II Express Briefs. 2015;62(12):1149-1153. doi:10.1109/TCSII.2015.2468927.

Rebsamen B, Guan C, Zhang H, Wang C, Teo C, Ang MH Jr, Burdet E. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):590-8. doi: 10.1109/TNSRE.2010.2049862. Epub 2010 May 10. — View Citation

Rosa So, Libedinsky C, Kai Keng Ang, Wee Chiek Clement Lim, Kyaw Kyar Toe, Cuntai Guan. Adaptive decoding using local field potentials in a brain-machine interface. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5721-5724. doi: 10.1109/EMBC.2016.7592026. — View Citation

Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, Rajangam S, Subramanian V, Ifft PJ, Li Z, Ramakrishnan A, Tate A, Zhuang KZ, Nicolelis MA. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods. 2014 Jun;11(6):670-6. doi: 10.1038/nmeth.2936. Epub 2014 Apr 28. — View Citation

So RQ, Xu Z, Libedinsky C., Ang KK, Toe KK, Yen SC, Guan CT (2015) Neural Representations of Movement during Brain-Controlled Self-Motion. Conf Proc 7th International IEEE EMBS Conference on Neural Engineering.

Technical specifications for short range devices - Issue 1 Rev 7, Apr 2013. https://www.ida.gov.sg/~/media/Files/PCDG/Licensees/StandardsQoS/RadiocomEquipStd/TSSRD.pdf

Xu Z, Guan CT, So RQ, Ang KK, Toe KK. (2015) Motor Cortical Adaptation Induced by Closed-Loop BCI. Conf Proc 7th International IEEE EMBS Conference on Neural Engineering.

Xu Z, So RQ, Toe KK, Ang KK, Guan C. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3049-52. doi: 10.1109/EMBC.2014.6944266. — View Citation

Yin M, Borton DA, Komar J, Agha N, Lu Y, Li H, Laurens J, Lang Y, Li Q, Bull C, Larson L, Rosler D, Bezard E, Courtine G, Nurmikko AV. Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron. 2014 Dec 17;84(6):1170-82. doi: 10.1016/j.neuron.2014.11.010. Epub 2014 Dec 4. — View Citation

Zaaroor M, Kosa G, Peri-Eran A, Maharil I, Shoham M, Goldsher D. Morphological study of the spinal canal content for subarachnoid endoscopy. Minim Invasive Neurosurg. 2006 Aug;49(4):220-6. doi: 10.1055/s-2006-948000. — View Citation

Zou, X., Liu, L., Cheong, J. H., et al. (2013). A 100-Channel 1-mW implantable neural recording IC. IEEE Trans Circuits Syst I Regul Pap, 60(10), 2584-2596. doi:10.1109/TCSI.2013.2249175.

* Note: There are 20 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary The number of serious adverse events (SAEs) and adverse events (AEs) reported per patient 12 months post-implantation. The primary objective of this study is to determine the safety of the device. This will be assessed based on the number of SAEs and AEs reported for each patient during the 12 months post-implantation evaluation. This measure will considered a success if the device is not removed for safety reasons within 12-months after implantation. 6 months post-implant
Secondary The signal quality of the electrodes for long-term recording of neural signals. Signal quality will be measured by the number of channels with identifiable single units tracked across each day for 12 months. Day 1 to Day 365 post-implant
Secondary Decoding accuracy per training session. Decoding accuracy will be measured in percentage (%). Day 1 to Day 365 post-implant
Secondary Number of successful trials per session The number of successful trials per training session will be measured in percentage (%). Day 1 to Day 365 post-implant
Secondary Time taken to complete each trial per session This will be measured in seconds (s). Day 1 to Day 365 post-implant
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A