Spinal Cord Injuries Clinical Trial
Official title:
Electrically Induced Cycling and Nutritional Counseling for Counteracting Obesity After SCI
NCT number | NCT03810963 |
Other study ID # | WilliamCareyU |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | May 1, 2017 |
Est. completion date | May 1, 2019 |
Verified date | October 2019 |
Source | William Carey University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Individuals who suffer from paralysis after spinal cord injury (SCI) are estimated to have an even greater (66%) prevalence of obesity. Obesity is a major public health concern and is associated with a plethora of cardiometabolic health complications (heart disease, stroke and type II diabetes mellitus). Although the benefits of physical activity to counteract obesity and cardiometabolic disease have been documented, SCI typically limits voluntary exercise to the often injured arms (60-90%). On the other hand, functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. The investigators have developed a novel high-intensity interval training (HIIT) protocol for FES lower extremities cycling that may provide equal or greater benefits with less time commitment. The investigators proof-of-principle study in 3 obese persons with SCI confirmed that HIIT-FES cycling 3 times per week for 8 weeks without dietary monitoring can increase legs lean mass (5-9%), increase cardiovascular health markers (58% on average) and decrease HbA1c blood levels (2-4%). Also, 2 persons decreased body weight and BMI. The investigators hypothesize that combining HIIT-FES cycling with nutritional counseling will be effective for reducing obesity and enhancing cardiometabolic health in persons with chronic SCI. Research AIM: To determine preliminary efficacy of HIIT-FES cycling combined with nutritional counseling in obese adults with SCI. In this pilot two-arm, parallel, pre-post, subject-matched controlled trial, we will test the hypothesis that the experimental group receiving HIIT-FES cycling plus nutritional counseling will decrease total body weight, decrease body fat percentage, decrease fat mass, increase total and legs lean mass, improve blood lipid levels, decrease blood glucose and HbA1c levels and improve vascular endothelial health (flow mediated dilation) significantly more than age-, sex- and injury-matched controls receiving nutritional counseling only. The investigators will recruit 20 obese adults, 21-65 years of age, with chronic post-traumatic SCI ranging in neurological level between C4 and T12. Participants will be divided into experimental (HIIT-FES cycling plus nutritional counseling) and control (nutritional counseling only) groups.
Status | Completed |
Enrollment | 15 |
Est. completion date | May 1, 2019 |
Est. primary completion date | May 1, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 21 Years to 65 Years |
Eligibility |
Inclusion Criteria: - We will recruit men and women with C4-T12 SCI (n=20) American Spinal Injury Association Impairment Scale A, B, or C as per International Standards for Neurological Classification of SCI; =2 years post-SCI; age 21-65 years; body fat percentage according to over-weight classifications detailed in Gallagher et al. Am J Clin Nut 2000,72:694-701 ( women 20-40 y/o > 30%, 41-60 y/o > 35%, > 60 y/o > 42%; men 20-40 y/o > 19%, 40-60 y/o > 22%, > 60 y/o > 25%). Exclusion Criteria: - Exclusion criteria include pressure wounds on buttocks or feet; unhealed bone fractures or history of fragility fractures; uncontrolled cardiovascular or metabolic disease; severe osteoporosis (T score = 4); uncontrolled autonomic dysreflexia; and current smokers. |
Country | Name | City | State |
---|---|---|---|
United States | William Carey University Physical Therapy Program | Hattiesburg | Mississippi |
Lead Sponsor | Collaborator |
---|---|
William Carey University | University of Mississippi Medical Center, University of Southern Mississippi |
United States,
Alm M, Soroudi N, Wylie-Rosett J, Isasi CR, Suchday S, Rieder J, Khan U. A qualitative assessment of barriers and facilitators to achieving behavior goals among obese inner-city adolescents in a weight management program. Diabetes Educ. 2008 Mar-Apr;34(2) — View Citation
Biering-Sørensen B, Kristensen IB, Kjaer M, Biering-Sørensen F. Muscle after spinal cord injury. Muscle Nerve. 2009 Oct;40(4):499-519. doi: 10.1002/mus.21391. Review. — View Citation
Brose SW, Boninger ML, Fullerton B, McCann T, Collinger JL, Impink BG, Dyson-Hudson TA. Shoulder ultrasound abnormalities, physical examination findings, and pain in manual wheelchair users with spinal cord injury. Arch Phys Med Rehabil. 2008 Nov;89(11):2 — View Citation
Buchholz AC, Pencharz PB. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care. 2004 Nov;7(6):635-9. Review. — View Citation
Castro MJ, Apple DF Jr, Hillegass EA, Dudley GA. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol. 1999 Sep;80(4):373-8. — View Citation
Conway JM, Ingwersen LA, Moshfegh AJ. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc. 2004 Apr;104(4):595-603. — View Citation
Conway JM, Ingwersen LA, Vinyard BT, Moshfegh AJ. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr. 2003 May;77(5):1171-8. — View Citation
Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology. 2013 Aug 20;81(8):723-8. doi: 10.1212/WNL.0b013e3182a1aa68. Epub 2013 Jul 24. — View Citation
Credeur DP, Mariappan N, Francis J, Thomas D, Moraes D, Welsch MA. Vasoreactivity before and after handgrip training in chronic heart failure patients. Atherosclerosis. 2012 Nov;225(1):154-9. doi: 10.1016/j.atherosclerosis.2012.08.013. Epub 2012 Sep 16. — View Citation
Curtis KA, Drysdale GA, Lanza RD, Kolber M, Vitolo RS, West R. Shoulder pain in wheelchair users with tetraplegia and paraplegia. Arch Phys Med Rehabil. 1999 Apr;80(4):453-7. — View Citation
DeVivo MJ, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil. 1999 Nov;80(11):1411-9. — View Citation
Dolbow DR, Gorgey AS, Dolbow JD, Gater DR. Seat pressure changes after eight weeks of functional electrical stimulation cycling: a pilot study. Top Spinal Cord Inj Rehabil. 2013 Summer;19(3):222-8. doi: 10.1310/sci1903-222. — View Citation
Dolbow DR, Gorgey AS, Ketchum JM, Moore JR, Hackett LA, Gater DR. Exercise adherence during home-based functional electrical stimulation cycling by individuals with spinal cord injury. Am J Phys Med Rehabil. 2012 Nov;91(11):922-30. doi: 10.1097/PHM.0b013e — View Citation
Eriks-Hoogland IE, Hoekstra T, de Groot S, Stucki G, Post MW, van der Woude LH. Trajectories of musculoskeletal shoulder pain after spinal cord injury: Identification and predictors. J Spinal Cord Med. 2014 May;37(3):288-98. doi: 10.1179/2045772313Y.00000 — View Citation
Fornusek C, Davis GM, Russold MF. Pilot study of the effect of low-cadence functional electrical stimulation cycling after spinal cord injury on thigh girth and strength. Arch Phys Med Rehabil. 2013 May;94(5):990-3. doi: 10.1016/j.apmr.2012.10.010. Epub 2 — View Citation
Froehlich-Grobe K, Lee J, Washburn RA. Disparities in obesity and related conditions among Americans with disabilities. Am J Prev Med. 2013 Jul;45(1):83-90. doi: 10.1016/j.amepre.2013.02.021. — View Citation
Gater DR Jr. Obesity after spinal cord injury. Phys Med Rehabil Clin N Am. 2007 May;18(2):333-51, vii. Review. — View Citation
Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commi — View Citation
Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Gater DR. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury--Part II. J Spinal Cord Med. 2015 Jan;38(1):23-37. doi: 10.1179/2045772314Y.0000000244. Epub 201 — View Citation
Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007 Apr;45(4):304-9. Epub 2006 Aug 29. — View Citation
Gorgey AS, Harnish CR, Daniels JA, Dolbow DR, Keeley A, Moore J, Gater DR. A report of anticipated benefits of functional electrical stimulation after spinal cord injury. J Spinal Cord Med. 2012 Mar;35(2):107-12. doi: 10.1179/204577212X13309481546619. — View Citation
Gorgey AS, Poarch HJ, Dolbow DD, Castillo T, Gater DR. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. J Rehabil Res Dev. 2014;51(9):1455-68. doi: 10.1682/JRRD.20 — View Citation
Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, Ivy JL. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009 Aug;19(4):614-22. doi: 1 — View Citation
Groah SL, Nash MS, Ward EA, Libin A, Mendez AJ, Burns P, Elrod M, Hamm LF. Cardiometabolic risk in community-dwelling persons with chronic spinal cord injury. J Cardiopulm Rehabil Prev. 2011 Mar-Apr;31(2):73-80. doi: 10.1097/HCR.0b013e3181f68aba. — View Citation
Jain NB, Higgins LD, Katz JN, Garshick E. Association of shoulder pain with the use of mobility devices in persons with chronic spinal cord injury. PM R. 2010 Oct;2(10):896-900. doi: 10.1016/j.pmrj.2010.05.004. — View Citation
Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, Solomon TP. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial — View Citation
Khalil RE, Gorgey AS, Janisko M, Dolbow DR, Moore JR, Gater DR. The role of nutrition in health status after spinal cord injury. Aging Dis. 2013 Feb;4(1):14-22. Epub 2012 Nov 30. — View Citation
Labounty TM, Gomez MJ, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, Chinnaiyan KM, Chow B, Cury R, Delago A, Dunning A, Feuchtner G, Hadamitzky M, Hausleiter J, Kaufmann P, Kim YJ, Leipsic J, Lin FY, Maff — View Citation
Laughton GE, Buchholz AC, Martin Ginis KA, Goy RE; SHAPE SCI Research Group. Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord. 2009 Oct;47(10):757-62. doi: 10.1038/sc.2009.33. Epub 2009 Apr 7. — View Citation
Medina GI, Nascimento FB, Rimkus CM, Zoppi Filho A, Cliquet A Jr. Clinical and radiographic evaluation of the shoulder of spinal cord injured patients undergoing rehabilitation program. Spinal Cord. 2011 Oct;49(10):1055-61. doi: 10.1038/sc.2011.64. Epub 2 — View Citation
Monroe MB, Tataranni PA, Pratley R, Manore MM, Skinner JS, Ravussin E. Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am J Clin Nutr. 1998 Dec;68(6):1223-7. — View Citation
Rajan S, McNeely MJ, Warms C, Goldstein B. Clinical assessment and management of obesity in individuals with spinal cord injury: a review. J Spinal Cord Med. 2008;31(4):361-72. Review. — View Citation
Ramaswamy P, Chikkabyrappa S, Donda K, Osmolovsky M, Rojas M, Rafii D. Relationship of ambulatory blood pressure and body mass index to left ventricular mass index in pediatric patients with casual hypertension. J Am Soc Hypertens. 2016 Feb;10(2):108-14. — View Citation
Restaino RM, Holwerda SW, Credeur DP, Fadel PJ, Padilla J. Impact of prolonged sitting on lower and upper limb micro- and macrovascular dilator function. Exp Physiol. 2015 Jul 1;100(7):829-38. doi: 10.1113/EP085238. Epub 2015 Jun 10. — View Citation
Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health. 2014 Jul 22;36:e2014009. doi: 10.4178/epih/e2014009. eCollection 2014. Review. — View Citation
Spungen AM, Adkins RH, Stewart CA, Wang J, Pierson RN Jr, Waters RL, Bauman WA. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol (1985). 2003 Dec;95(6):2398-407. Epub 2003 Aug 8. — View Citation
Stoner L, McCully KK. Peak and time-integrated shear rates independently predict flow-mediated dilation. J Clin Ultrasound. 2012 Jul-Aug;40(6):341-51. doi: 10.1002/jcu.21900. Epub 2012 Mar 11. — View Citation
Stoner L, Sabatier M, VanhHiel L, Groves D, Ripley D, Palardy G, McCully K. Upper vs lower extremity arterial function after spinal cord injury. J Spinal Cord Med. 2006;29(2):138-46. — View Citation
Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, Parker B, Widlansky ME, Tschakovsky ME, Green DJ. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011 Jan;300 — View Citation
Valent LJ, Dallmeijer AJ, Houdijk H, Slootman J, Janssen TW, Hollander AP, van der Woude LH. The individual relationship between heart rate and oxygen uptake in people with a tetraplegia during exercise. Spinal Cord. 2007 Jan;45(1):104-11. Epub 2006 Jun 2 — View Citation
Winter Y, Rohrmann S, Linseisen J, Lanczik O, Ringleb PA, Hebebrand J, Back T. Contribution of obesity and abdominal fat mass to risk of stroke and transient ischemic attacks. Stroke. 2008 Dec;39(12):3145-51. doi: 10.1161/STROKEAHA.108.523001. Epub 2008 A — View Citation
Yilmaz B, Yasar E, Goktepe S, Alaca R, Yazicioglu K, Dal U, Mohur H. Basal metabolic rate and autonomic nervous system dysfunction in men with spinal cord injury. Obesity (Silver Spring). 2007 Nov;15(11):2683-7. — View Citation
* Note: There are 42 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Body Fat Percentage | Percentage of body fat measured during pre- and post-testing | Eight Weeks | |
Primary | Fat mass and lean mass | Total fat and lean mass in kg measured during pre- and post-testing | Eight Weeks | |
Primary | Arterial health via flow mediated dilation | Measurement of arterial diameter change in mm after blood flow restriction during pre- poste testing | Eight Weeks | |
Primary | Blood glucose testing | Using finger stick blood droplet method pre- and post-testing for blood glucose and HbA1c measures | 8 weeks | |
Secondary | Pre- post- intervention three day dietary recall | Prior to and after the intervention a 3 day dietary recall will be completed to determine changes in dietary habits. | Eight Weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06321172 -
Muscle and Bone Changes After 6 Months of FES Cycling
|
N/A | |
Completed |
NCT03457714 -
Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
|
||
Recruiting |
NCT05484557 -
Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury
|
N/A | |
Suspended |
NCT05542238 -
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Not yet recruiting |
NCT05506657 -
Early Intervention to Promote Return to Work for People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04105114 -
Transformation of Paralysis to Stepping
|
Early Phase 1 | |
Recruiting |
NCT03680872 -
Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System
|
N/A | |
Completed |
NCT04221373 -
Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation
|
N/A | |
Completed |
NCT00116337 -
Spinal Cord Stimulation to Restore Cough
|
N/A | |
Completed |
NCT03898700 -
Coaching for Caregivers of Children With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04883463 -
Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury
|
N/A | |
Active, not recruiting |
NCT04881565 -
Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES)
|
N/A | |
Completed |
NCT04864262 -
Photovoice for Spinal Cord Injury to Prevent Falls
|
N/A | |
Recruiting |
NCT04007380 -
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
|
N/A | |
Active, not recruiting |
NCT04544761 -
Resilience in Persons Following Spinal Cord Injury
|
||
Terminated |
NCT03170557 -
Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation
|
N/A | |
Completed |
NCT03220451 -
Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients
|
N/A | |
Recruiting |
NCT04811235 -
Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial
|
N/A | |
Recruiting |
NCT04736849 -
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
|
N/A |