Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT03669302
Other study ID # C33276GG
Secondary ID
Status Terminated
Phase N/A
First received
Last updated
Start date August 1, 2018
Est. completion date October 2, 2021

Study information

Verified date August 2022
Source City University of New York
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Robotic gait training is often used with the aim to improve walking ability in individuals with Spinal Cord Injury. However, robotic gait training alone may not be sufficient. This study will compare the effects of robotic gait training alone to robotic gait training combined with either low-frequency or high-frequency non-invasive transspinal electrical stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of nerve function will be performed before and after 20 sessions of gait training with or without stimulation.


Description:

People with spinal cord injury (SCI) have motor dysfunction that results in substantial social, personal, and economic costs. Robotic gait training is often used with the aim to improve walking ability in these individuals. Investigators recently reported that robotic gait training reorganizes spinal neuronal circuits, improves motor activity, and contributes substantially to recovery of walking ability in people with motor incomplete SCI. However, pathological muscle tone and abnormal muscle activation patterns during assisted stepping were still evident after multiple sessions of robotic gait training. Locomotor training alone may thus be insufficient to strengthen weak neuronal synapses connecting the brain with the spinal cord or to fully optimize spinal neural circuits. On the other hand, spinal cord stimulation increases sprouting and plasticity of axons and dendrites in spinalized animals. Furthermore, transcutaneous spinal cord stimulation (termed here transspinal stimulation) in people with SCI can evoke rhythmic leg muscle activity when gravity is eliminated. A fundamental knowledge gap still exists on induction of functional neuroplasticity and recovery of leg motor function after repetitive thoracolumbar transspinal stimulation during body weight supported (BWS) assisted stepping in people with SCI. The central working hypothesis in this study is that transspinal stimulation delivered during BWS-assisted stepping provides a tonic excitatory input increasing the overall responsiveness of the spinal cord and improving motor output. The investigators will address 3 specific aims: Establish induction of neuroplasticity and improvements in leg sensorimotor function in people with motor incomplete SCI when transspinal stimulation is delivered during BWS-assisted stepping at low frequencies (0.3 Hz; Specific Aim 1) and at high frequencies (30 Hz; Specific Aim 2), and when BWS-assisted step training is administered without transspinal stimulation (Specific Aim 3). In all groups, outcomes after 20 sessions will be measured via state-of-the-art neurophysiological methods. Corticospinal circuit excitability will be measured via transcranial magnetic stimulation motor evoked potentials in seated subjects (Aims 1A, 2A, 3A). Soleus H-reflex and tibialis anterior flexor reflex excitability patterns will be measured during assisted stepping (Aims 1B, 2B, 3B). Sensorimotor function will be evaluated via standardized clinical tests of gait and strength (Aims 1C, 2C, 3C). Additionally, poly-electromyographic analysis of coordinated muscle activation will be measured in detail. It is hypothesized that transspinal stimulation at 30 Hz during assisted stepping improves leg motor function and decreases ankle spasticity more compared to 0.3 Hz. It is further hypothesized that transspinal stimulation at 30 Hz normalizes the abnormal phase-dependent soleus H-reflex and flexor reflex modulation commonly observed during stepping in people with motor incomplete SCI. To test the project hypotheses, 45 people with motor incomplete SCI will be randomly assigned to receive 20 sessions of transspinal stimulation at 0.3 or 30 Hz during BWS-assisted stepping or 20 sessions of BWS-assisted stepping without transspinal stimulation (15 subjects per group). Results from this research project will advance considerably the field of spinal cord research and change the standard of care because there is great potential for development of novel and effective rehabilitation strategies to improve leg motor function after motor incomplete SCI in humans.


Recruitment information / eligibility

Status Terminated
Enrollment 10
Est. completion date October 2, 2021
Est. primary completion date October 1, 2021
Accepts healthy volunteers No
Gender All
Age group 18 Years to 65 Years
Eligibility Inclusion criteria: - Clinical diagnosis of motor incomplete spinal cord injury (SCI). - SCI is above thoracic 12 vertebra. - Absent permanent ankle joint contractures. - SCI occurred 6 months before enrollment to the study. Exclusion criteria: - Supraspinal lesions - Neuropathies of the peripheral nervous system - Degenerative neurological disorders of the spine or spinal cord - Motor complete SCI - Presence of pressure sores - Urinary tract infection - Neoplastic or vascular disorders of the spine or spinal cord - Pregnant women or women who suspect they may be or may become pregnant. - People with cochlear implants, pacemaker and implanted stimulators - People with history of seizures - People with implanted Baclofen pumb

Study Design


Intervention

Other:
Robotic gait training
Fifteen people with spinal cord injury will receive 20 daily sessions of robotic gait training. During assisted stepping, they will receive also non-invasive transspinal stimulation as a pulse train at 30 Hz during the stance phase of gait. Before and after training standardized clinical and neurophysiological tests will be used to assess recovery of sensorimotor function.
Device:
Robotic gait training and low-frequency transspinal stimulation
Fifteen people with spinal cord injury will receive 20 daily sessions of robotic gait training. During assisted stepping, they will receive also non-invasive transspinal stimulation as a single pulse at 0.3 Hz during the stance phase of gait. Before and after training standardized clinical and neurophysiological tests will be used to assess recovery of sensorimotor function.
Robotic gait training and high-frequency transspinal stimulation
Fifteen people with spinal cord injury will receive 20 daily sessions of robotic gait training. During assisted stepping, they will receive also non-invasive transspinal stimulation as a pulse train at 30 Hz during the stance phase of gait. Before and after training standardized clinical and neurophysiological tests will be used to assess recovery of sensorimotor function.

Locations

Country Name City State
United States Veterans Affairs Medical Center Bronx New York
United States Department of Physical Therapy, Motor Control and NeuroRecovery Laboratory Staten Island New York

Sponsors (2)

Lead Sponsor Collaborator
City University of New York Bronx Veterans Medical Research Foundation, Inc

Country where clinical trial is conducted

United States, 

References & Publications (49)

Adams MM, Ginis KA, Hicks AL. The spinal cord injury spasticity evaluation tool: development and evaluation. Arch Phys Med Rehabil. 2007 Sep;88(9):1185-92. — View Citation

Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987 May;25(3):341-4. — View Citation

Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth. J Neurosci. 2010 Aug 11;30(32):10918-26. doi: 10.1523/JNEUROSCI.1435-10.2010. — View Citation

Chang CW, Lien IN. Estimate of motor conduction in human spinal cord: slowed conduction in spinal cord injury. Muscle Nerve. 1991 Oct;14(10):990-6. — View Citation

Chen R, Tam A, Bütefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol. 1998 Dec;80(6):2870-81. — View Citation

Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001 May;39(5):252-5. — View Citation

Conway BA, Knikou M. The action of plantar pressure on flexion reflex pathways in the isolated human spinal cord. Clin Neurophysiol. 2008 Apr;119(4):892-6. doi: 10.1016/j.clinph.2007.12.015. Epub 2008 Mar 4. — View Citation

Dimitrijevic MM, Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. Cent Nerv Syst Trauma. 1986 Spring;3(2):129-44. — View Citation

Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: II. Neurophysiologic observations. Cent Nerv Syst Trauma. 1986 Spring;3(2):145-52. — View Citation

Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M; Spinal Cord Injury Locomotor Trial Group. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006 Feb 28;66(4):484-93. — View Citation

Dy CJ, Gerasimenko YP, Edgerton VR, Dyhre-Poulsen P, Courtine G, Harkema SJ. Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury. J Neurophysiol. 2010 May;103(5):2808-20. doi: 10.1152/jn.00316.2009. — View Citation

Einhorn J, Li A, Hazan R, Knikou M. Cervicothoracic multisegmental transpinal evoked potentials in humans. PLoS One. 2013 Oct 7;8(10):e76940. doi: 10.1371/journal.pone.0076940. eCollection 2013. — View Citation

Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011 Jan;91(1):48-60. doi: 10.2522/ptj.20090359. Epub 2010 Nov 4. — View Citation

Gad P, Choe J, Shah P, Garcia-Alias G, Rath M, Gerasimenko Y, Zhong H, Roy RR, Edgerton VR. Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats. J Neuroeng Rehabil. 2013 Oct 24;10:108. doi: 10.1186/1743-0003-10-108. — View Citation

Hajela N, Mummidisetty CK, Smith AC, Knikou M. Corticospinal reorganization after locomotor training in a person with motor incomplete paraplegia. Biomed Res Int. 2013;2013:516427. doi: 10.1155/2013/516427. Epub 2012 Dec 26. — View Citation

Hofstoetter US, Knikou M, Guertin PA, Minassian K. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation. Curr Pharm Des. 2017;23(12):1805-1820. doi: 10.2174/1381612822666161214144655. Review. — View Citation

Hofstoetter US, Krenn M, Danner SM, Hofer C, Kern H, McKay WB, Mayr W, Minassian K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif Organs. 2015 Oct;39(10):E176-86. doi: 10.1111/aor.12615. Epub 2015 Oct 6. — View Citation

Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014 Mar;37(2):202-11. doi: 10.1179/2045772313Y.0000000149. Epub 2013 Nov 26. — View Citation

Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F, Dimitrijevic MR. Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs. 2008 Aug;32(8):644-8. doi: 10.1111/j.1525-1594.2008.00616.x. — View Citation

Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. Repetitive spinal electromagnetic stimulation opens a window of synaptic plasticity in damaged spinal cord: role of NMDA receptors. J Neurophysiol. 2012 Jun;107(11):3027-39. doi: 10.1152/jn.00015.2012. Epub 2012 Mar 7. — View Citation

James ND, Bartus K, Grist J, Bennett DL, McMahon SB, Bradbury EJ. Conduction failure following spinal cord injury: functional and anatomical changes from acute to chronic stages. J Neurosci. 2011 Dec 14;31(50):18543-55. doi: 10.1523/JNEUROSCI.4306-11.2011. — View Citation

Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Flexion reflex modulation during stepping in human spinal cord injury. Exp Brain Res. 2009 Jul;196(3):341-51. doi: 10.1007/s00221-009-1854-x. Epub 2009 May 26. — View Citation

Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res. 2009 Mar;193(3):397-407. doi: 10.1007/s00221-008-1636-x. Epub 2008 Nov 15. — View Citation

Knikou M, Conway BA. Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury. Spinal Cord. 2005 Nov;43(11):640-8. — View Citation

Knikou M, Dixon L, Santora D, Ibrahim MM. Transspinal constant-current long-lasting stimulation: a new method to induce cortical and corticospinal plasticity. J Neurophysiol. 2015 Sep;114(3):1486-99. doi: 10.1152/jn.00449.2015. Epub 2015 Jun 24. — View Citation

Knikou M, Hajela N, Mummidisetty CK, Xiao M, Smith AC. Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clin Neurophysiol. 2011 Jul;122(7):1396-404. doi: 10.1016/j.clinph.2010.12.044. Epub 2011 Jan 14. — View Citation

Knikou M, Hajela N, Mummidisetty CK. Corticospinal excitability during walking in humans with absent and partial body weight support. Clin Neurophysiol. 2013 Dec;124(12):2431-8. doi: 10.1016/j.clinph.2013.06.004. Epub 2013 Jun 28. — View Citation

Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014 Jun 1;111(11):2264-75. doi: 10.1152/jn.00871.2013. Epub 2014 Mar 5. — View Citation

Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol. 2015 Apr 1;113(7):2447-60. doi: 10.1152/jn.00872.2014. Epub 2015 Jan 21. — View Citation

Knikou M. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Exp Brain Res. 2013 Jul;228(3):279-96. doi: 10.1007/s00221-013-3560-y. Epub 2013 May 25. — View Citation

Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol. 2010 Oct;121(10):1655-68. doi: 10.1016/j.clinph.2010.01.039. Epub 2010 Apr 27. Review. — View Citation

Knikou M. Neurophysiological characteristics of human leg muscle action potentials evoked by transcutaneous magnetic stimulation of the spine. Bioelectromagnetics. 2013 Apr;34(3):200-10. doi: 10.1002/bem.21768. Epub 2012 Nov 28. — View Citation

Knikou M. Neurophysiological characterization of transpinal evoked potentials in human leg muscles. Bioelectromagnetics. 2013 Dec;34(8):630-40. doi: 10.1002/bem.21808. Epub 2013 Sep 20. — View Citation

Knikou M. Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast. 2012;2012:254948. doi: 10.1155/2012/254948. Epub 2012 Jun 4. Review. — View Citation

Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods. 2008 Jun 15;171(1):1-12. doi: 10.1016/j.jneumeth.2008.02.012. Epub 2008 Mar 4. Review. — View Citation

Knikou M. Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One. 2014 Jul 9;9(7):e102313. doi: 10.1371/journal.pone.0102313. eCollection 2014. — View Citation

Maertens de Noordhout A, Rothwell JC, Thompson PD, Day BL, Marsden CD. Percutaneous electrical stimulation of lumbosacral roots in man. J Neurol Neurosurg Psychiatry. 1988 Feb;51(2):174-81. — View Citation

Maiman DJ, Mykleburst JB, Barolat-Romana G. Spinal cord stimulation for amelioration of spasticity: experimental results. Neurosurgery. 1987 Sep;21(3):331-3. — View Citation

Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, Haak M, Hudson LM, Priebe MM; ASIA Neurological Standards Committee 2002. International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003 Spring;26 Suppl 1:S50-6. — View Citation

Minassian K, Hofstoetter US, Danner SM, Mayr W, Bruce JA, McKay WB, Tansey KE. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals. Neurorehabil Neural Repair. 2016 Mar;30(3):233-43. doi: 10.1177/1545968315591706. Epub 2015 Jun 18. — View Citation

Minassian K, Hofstoetter US. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci Ther. 2016 Apr;22(4):262-70. doi: 10.1111/cns.12530. Epub 2016 Feb 18. Review. — View Citation

Murray LM, Knikou M. Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury. Front Neurol. 2017 Feb 20;8:50. doi: 10.3389/fneur.2017.00050. eCollection 2017. — View Citation

Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14. Review. — View Citation

Smith AC, Knikou M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast. 2016;2016:1216258. doi: 10.1155/2016/1216258. Epub 2016 May 11. Review. — View Citation

Smith AC, Mummidisetty CK, Rymer WZ, Knikou M. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury. J Neurophysiol. 2014 Nov 1;112(9):2164-75. doi: 10.1152/jn.00308.2014. Epub 2014 Aug 13. — View Citation

Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp Brain Res. 2015 Jan;233(1):89-103. doi: 10.1007/s00221-014-4094-7. Epub 2014 Sep 10. — View Citation

Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005 Oct;94(4):2844-55. Epub 2005 Jul 6. — View Citation

Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16. — View Citation

Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005 Apr;86(4):672-80. — View Citation

* Note: There are 49 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Plasticity of cortical and corticospinal neuronal circuits Neurophysiological tests probing cortical and corticospinal excitability will be measured before and after the intervention. Single-pulse transcranial magnetic stimulation (TMS) will be used to assemble the recruitment curve of motor evoked potentials, and paired-pulse TMS will be used to probe changes in cortical inhibitory and facilitatory neuronal circuits. 3 years
Primary Plasticity of spinal neuronal circuits Neurophysiological tests probing spinal reflex excitability will be measured before and after each intervention by posterior tibial and sural nerves stimulation during Lokomat-assisted stepping depicting the amplitude modulation of the soleus H-reflex and tibialis anterior flexor reflex. 3 years
Secondary Senorimotor leg motor function Manual muscle test and leg sensation based on American Spinal Injury Association guidelines. 3 years
Secondary Spasticity Tardieu scale 3 years
Secondary Walking function Two-minute walk test and 10 meter timed test. 3 years
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A