Clinical Trials Logo

Clinical Trial Summary

Accumulating evidence suggests that repeatedly breathing low oxygen levels for brief periods (termed intermittent hypoxia) is a safe and effective treatment strategy to promote meaningful functional recovery in persons with chronic spinal cord injury (SCI). The goal of the study is to understand the mechanisms by which intermittent hypoxia enhances motor function and spinal plasticity (ability of the nervous system to strengthen neural pathways based on new experiences) following SCI.


Clinical Trial Description

Accumulating evidence suggests that repeatedly breathing low oxygen levels for brief periods (termed intermittent hypoxia) is a safe and effective treatment strategy to promote meaningful functional recovery in persons with chronic spinal cord injury. Repetitive exposure to mild hypoxia triggers a cascade of events in the spinal cord, including new protein synthesis and increased sensitivity in the circuitry necessary for breathing and walking. Recently, the investigators demonstrated that daily (5 consecutive days of) intermittent hypoxia stimulated walking enhancement in persons with chronic spinal cord injury. Despite these exciting findings, important questions remain. First, does intermittent hypoxia improve walking recovery by increasing strength or muscle coordination or both? Understanding its mechanisms will allow us to best apply intermittent hypoxia in the clinic. Second, initial studies indicate that the beneficial effects of intermittent hypoxia are greatest when intermittent hypoxia is used just prior to task training and that the benefits are greatest for the practiced task. The investigators will explore this possibility by examining the effects of intermittent hypoxia on walking ability and force production when applied alone and when applied in combination with walking training or strength training. The investigators expect to observe the greatest improvements in walking ability in those individuals receiving intermittent hypoxia with walking training and the greatest improvements in strength in response to intermittent hypoxia with strength training. Third, studies suggest that intermittent hypoxia induces spinal plasticity by increasing the expression of a key plasticity-promoting protein, brain-derived neurotrophic factor (BDNF). Mutations in the BDNF gene have been shown to impair BDNF functionality. Thus, the investigators will also explore the impact of BDNF polymorphisms on responsiveness to intermittent hypoxia therapy. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02323945
Study type Interventional
Source Spaulding Rehabilitation Hospital
Contact Randy D Trumbower, PT, PhD
Phone 617-952-6951
Email randy.trumbower@mgh.harvard.edu
Status Recruiting
Phase N/A
Start date October 2014
Completion date May 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A