View clinical trials related to Spinal Cord Injuries.
Filter by:The purpose of this research study is to evaluate an exoskeleton device and mobility skills in the device.
Accumulating evidence suggests that repeatedly breathing low oxygen levels for brief periods (termed intermittent hypoxia) is a safe and effective treatment strategy to promote meaningful functional recovery in persons with chronic spinal cord injury (SCI). The goal of the study is to understand the mechanisms by which intermittent hypoxia enhances motor function and spinal plasticity (ability of the nervous system to strengthen neural pathways based on new experiences) following SCI.
Losing the ability to walk can lead to fewer opportunities to socialize with friends and family and participate in the community. When this happens, powered wheelchairs can provide access to homes and communities, contributing to health and well-being. Training by a qualified occupational therapist allows an individual to use a powered wheelchair safely and effectively. Learning to drive a powered wheelchair can be difficult, frustrating and time consuming for people with cognitive and physical challenges. In this study, we will ask participants with cognitive impairments to complete training with an occupational therapist using either a shared control wheelchair or training methods according to the standard of care. We believe shared control training, entitled Collaborative Powered mobility Innovative Learning OpporTunity (CoPILOT) will enhance driving skill while maximizing safety learning. CoPILOT has the potential to enable people to participate more in their day to day lives and regain mobility independence.
The aim of this study is to understand what happens to muscle and bone in spinal cord injured males after four months of training using stand training, with body weight support (BWS), with testosterone replacement therapy (TRT), and electrical stimulation (ES). Specifically, researchers will investigate nerve, muscle, and bone changes in the lower limbs in response to stand training and ES when combined with TRT compared to i) standing alone with TRT; ii) stand training alone with placebo; iii) stand training alone and ES with placebo.
The primary objective of this study is to achieve successful walking skills using exoskeletal walking devices over the course of 36 sessions in 3 months at specific velocities and distances in people with chronic SCI who are wheelchair dependent for community mobility. The secondary objectives are to determine if this amount of exoskeletal walking is effective in improving bowel function and body composition in the same patient population. The exploratory objectives are to address additional questions concerning the retention or non-retention of the positive changes, the effects of the increased physical activity from this intervention on vagal tone, orthostatic tolerance, lipid profile, total testosterone, estradiol levels, and quality of life (QOL). A Phase III randomized clinical trial (RCT) will be performed using a crossover design and employing an exoskeletal-assisted walking intervention. The experimental arm will be compared to a usual activities (UA) arm, as the control, in 64 persons with chronic SCI (>6 month post injury) who are wheelchair-dependent for outdoor mobility in the community. The WALK arm will consist of supervised exoskeletal-assisted walking training, three sessions per week (4-6 h/week) for 36 sessions for their second 12-week period. The UA arm will consist of identification of usual activities for each participant, encouragement to continue with these activities and attention by study team members throughout the 12-week UA arm. These activities will be recorded in a weekly log. The investigators hypotheses are that 1) this exoskeletal intervention will be successful in training ambulatory skills in this patient population, 2) the exoskeletal intervention will be better than a control group in improving body composition, bowel function, metabolic parameters and quality of life in the same population.
The aim of the study is to investigate whether there is an effect of electrical stimulation on the denervated gluteus muscle (buttocks) in individuals with chronic spinal cord injury. The expected outcome is an increase in muscle volume and a better pressure distribution during sitting. The stimulation of the gluteus muscle is performed daily for 35 minutes over a period of six months. The muscle volume and the pressure distribution are measured before stimulation, three months after having started stimulation and after six months.
Ambulation would bring many physiological and psychological benefits and getting up and walking has been a dream for paraplegia patients.The reciprocating gait orthoses (RGOs) for paraplegics particularly draws research attentions because it mimics human gait pattern.But, the high energy consumption and low walking speeds caused the frequent abandonment or the low utilization of the reciprocating gait orthoses.To improve the design reducing the energy expenditure, it requires biomechanical analysis of the pathological gait such that the gait deviations and energy consuming mechanisms can be identified and remedial means can be implemented. The investigators hypotheses will include that there would exist an energy saving mechanism of human reciprocating locomotion based on the principle of conservation of mechanical energy.Secondly, kinematic and kinetic gait determinants could be derived from the energy saving mechanism. Finally, the control of knee joint coordinating with the hip joint movements would facilitate the gait progression and further reduce the energy consumption. The objective of this clinical trial is to evaluate the gait of paraplegic patients with reciprocating gait orthoses and to support the investigators research in biomechanical analysis, design and control of reciprocating gait orthoses for paraplegia patients. An experiment to study the pathological gait of paraplegia patients with an existing reciprocating gait orthosis will be carried out.
This study will evaluate the Indego® device for safety and effectiveness at allowing persons with SCI who are non-ambulatory or poorly ambulatory to stand up and walk under a variety of conditions.
The hypothesis is to the fulfillment of canoeing, handbike and conventional physiotherapy activities the groups could show improvement in muscle strength of the arms, decreased resistance of the lower limbs (spasticity), improved trunk balance and movements of the upper limbs, improves cardiovascular function, bone health, and consequently improve the quality of life.
Development of neuropathic pain is one of the most disabling sequels after spinal cord injury (SCI) and in peripheral nerve diseases. The functionality of the pain pathway in humans as well as its plastic changes following SCI can be assessed in vivo by surface electrophysiological recordings and functional magnetic resonance imaging after noxious heat stimulation of the skin. Aims: a) establishing a clinically applicable assessment of the pain pathway and characterizing its changes as a consequence of SCI and in peripheral nerve diseases in an objective manner, b) characterizing plastic changes in the pain pathway in SCI patients with neuropathic pain and in patients with peripheral nerve diseases and relating them to the development of neuropathic pain syndromes.