Clinical Trials Logo

Clinical Trial Summary

The proposed research aims to determine brain abnormalities in patients with spasmodic dysphonia (SD) and voice tremor (VT) as the basis for characterization of central mechanisms underlying symptom improvement following the use of sodium oxybate, a novel oral medication for the treatment of ethanol-responsive dystonia. The proposed research is relevant to public health because the elucidation of disorder-specific mechanistic aspects of brain organization in SD vs. SD/VT is ultimately expected to lead to establishment of enhanced criteria for clinical management of these disorders, including differential diagnosis and treatment. Thus, the proposed research is relevant to the part of NIH's mission that pertains to developing fundamental knowledge that will help to reduce the burdens of human disability.


Clinical Trial Description

Spasmodic dysphonia (SD) is a chronic debilitating condition, characterized by selective loss of voluntary voice control during speech production due to uncontrolled spasms in the laryngeal muscles. SD becomes even more incapacitating when it is associated with action-induced voice tremor (VT) due to its poor response to gold standard treatment with botulinum toxin. There is, therefore, a critical need to identify new treatment opportunities for SD/VT patients who receive limited, if any, benefits from botulinum toxin injections. The design and use of novel therapeutic approaches for these patients will, however, be largely unattainable if the central mechanisms of SD and VT development remain unknown. Our long-term goal is to determine the pathophysiology of SD and related disorders, such as VT, for the development of new diagnostic and treatment options for these patients. The objective of this application is to identify brain abnormalities in SD and SD/VT patients as the basis for characterization of central mechanisms underlying symptom improvement following the use of sodium oxybate, a novel pharmacological agent for treatment of ethanol-responsive dystonia. Our central hypothesis is that, compared to SD patients, SD/VT patients will have additional brain abnormalities within the sensorimotor brain circuits controlling voice production, which are being modulated to a greater extent with sodium oxybate treatment. We further postulate that clinical efficacy of sodium oxybate treatment will correlate with its central modulatory effects. The rationale for the proposed research is that identification of distinct brain mechanisms underlying SD and SD/VT clinical manifestations would provide the necessary insights into the pathophysiology of these disorders, while understanding the neural correlates of sodium oxybate action would allow establishment of a scientific rationale for the use of a novel treatment in these disorders. Using a comprehensive approach of multi-modal neuroimaging and clinico-behavioral testing, our central hypothesis will be tested by pursuing two specific aims: (1) determine disorder-specific brain abnormalities in SD and SD/VT patients, and (2) characterize the central effects of sodium oxybate treatment in ethanol-responsive SD and SD/VT patients. This research is innovative because it focuses not only on identification of distinct pathophysiological factors contributing to SD and VT development, but also on discovery of mechanisms of central effects of a novel oral medication, sodium oxybate, which holds promise for treatment of refractory symptoms in SD and SD/VT. The proposed research is significant because it will advance our understanding of the pathophysiology of dystonia in general and SD in particular as well as will have direct impact on improvement of clinical management of SD and SD/VT patients. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01961297
Study type Interventional
Source Icahn School of Medicine at Mount Sinai
Contact
Status Completed
Phase Phase 2
Start date July 2012
Completion date June 30, 2017

See also
  Status Clinical Trial Phase
Recruiting NCT06111027 - Usability of Vibro-tactile Stimulation to Treat Spasmodic Dysphonia Phase 1/Phase 2
Withdrawn NCT02061943 - Examining the Spasmodic Dysphonia Diagnosis and Assessment Procedure (SD-DAP) for Measuring Symptom Change N/A
Recruiting NCT05158166 - DaxibotulinumtoxinA Injection for Treatment of Adductor Spasmodic Dysphonia Phase 1/Phase 2
Recruiting NCT05580302 - Cortical Silent Period in Laryngeal Dystonia
Recruiting NCT05150106 - Characterization of Clinical Phenotypes of Laryngeal Dystonia and Voice Tremor
Recruiting NCT05216770 - Understanding Disorder-specific Neural Pathophysiology in Laryngeal Dystonia and Voice Tremor Early Phase 1
Recruiting NCT05150093 - Deep Brain Stimulation in Laryngeal Dystonia and Voice Tremor N/A
Completed NCT00713414 - Role of Neurotransmission and Functional CNS Networks in Spasmodic Dysphonia
Completed NCT00118586 - Neuropathology of Spasmodic Dysphonia
Not yet recruiting NCT04938154 - A Phase 2 Trial of Deep Brain Stimulation for Spasmodic Dysphonia Phase 2
Active, not recruiting NCT03292458 - Sodium Oxybate in Spasmodic Dysphonia and Voice Tremor Phase 2/Phase 3
Completed NCT02957942 - rTMS in Spasmodic Dysphonia N/A
Completed NCT02558634 - Thalamic Deep Brain Stimulation for Spasmodic Dysphonia- DEBUSSY Trial N/A
Terminated NCT00895063 - Effect of Vocal Exercise After Botulinum Toxin Injection for Spasmodic Dysphonia N/A
Completed NCT05158179 - Assessment of Laryngopharyngeal Sensation in Adductor Spasmodic Dysphonia N/A
Not yet recruiting NCT06078527 - Assessment of Laryngopharyngeal Sensation: Cancer Survivor Cohort N/A
Enrolling by invitation NCT05892770 - Zinc Supplementation Prior to Botox Injections for Spasmodic Dysphonia Phase 1/Phase 2
Completed NCT04648891 - Spasmodic Dysphonia Pain Phase 2/Phase 3
Completed NCT03042962 - Brain Networks in Dystonia
Completed NCT03746509 - Laryngeal Vibration for Spasmodic Dysphonia N/A