Solid Tumour Clinical Trial
Official title:
Phase I Clinical Study Combining L19-IL2 With Stereotactic Ablative Body Radiotherapy in Patients With Oligometastatic Solid Tumor.
The formation of metastasis is responsible for as much as 90% of cancer-associated
mortality. In spite of recent advances in oncologic therapy, approximately 50 % of the lung
cancer patients have already overt disseminated cancer at diagnosis. Additionally, numerous
patients with locoregional disease initially treated with curative intent develop
(oligo)metastases during the course of disease. In both instances, these stage IV patients
are generally considered to be incurable and mostly treated palliatively.
Oligometastases, defined as 1-5 sites of active disease on whole body imaging, was coined to
refer to isolated sites of metastasis resembling limited tumor metastatic capacity. The
implication of this concept is that local cancer treatments are curative in a proportion of
patients with metastases and that incorporating local therapy is a conceptually attractive
approach. In several, but not all, academic centers the standard treatment of patients with
oligometastases in good general health is standard chemotherapy followed by surgery or by
Stereotactic Ablative Body Radiotherapy (SABR) with radical dose on the macroscopic visible
tumors.
The widespread introduction of SABR and of minimally invasive surgery has fuelled research
in treating patients with oligometastases. Indeed, local control of metastases can be
obtained in virtually all parts of the body with a low proportion of patients experiencing
severe side effects. In the few prospective studies published to date, approximately 20% of
patients remained free of recurrence several years after treatment when all sites of disease
were targeted by radiation.
Along with standard anti-cancer therapeutic modalities like chemotherapy and radiotherapy
(RT), immunotherapy has recently gained a lot of attention.
Angiogenesis is one of the hallmarks of cancer, and therefore, considerable efforts have
been made to exploit this unique target for selective drug delivery. One of the appealing
targets for both approaches is the splice variant of fibronectin containing extra domain B
(EDB), which is abundantly expressed in vascular endothelial cells of a variety of primary
tumors as well as metastases , but virtually absent in normal tissues. Recently, a human
recombinant scFv fragment directed against EDB, designated L19, was developed and
subsequently combined with the pro-inflammatory interleukin-2 (IL2), resulting in the
immunocytokine L19-IL2. L19-IL2 delivers high doses of IL2 to the (metastatic) tumor site(s)
exploiting the selective expression of EDB on newly formed blood vessels. Interleukin-2
(IL2) plays an essential role in the activation phases of both specific and natural immune
responses. Even though it has no direct cytotoxic effects on cancer cells, it can induce
tumor regression by stimulating a potent cell-mediated response. In summary, L19-IL2 is an
immunocytokine which will stimulate immune response specifically in tumors with angiogenesis
and tissue remodeling.
Radiotherapy is a particularly interesting partner for immunotherapy, since it can be
harnessed to specifically modify the immunogenicity of the primary tumors and their
microenvironment, in the attempt to generate an in situ immunization of the host against a
patient's own cancer. Our hypothesis is that three independent therapeutic approaches will
synergize to improve dramatically survival in patients with oligometastases of solid tumors.
1. Tumor vasculature Profound differences exist between vascular endothelium and
surrounding stroma of normal tissues and tumors. Tumor vasculature is extremely
disorganized and tortuous. Vascular shunts are frequent, and distinguishing arterioles
from venules can be challenging. Apart from the architecture, the blood flow itself is
strikingly altered: it can be sluggish, sometimes stationary or even reverse. The
endothelium in tumors proliferates rapidly and contributes to active angiogenesis. The
direct contact of the tumor endothelium with the host's blood pool makes this site a
unique target for selective drug delivery.
2. L19 Fibronectin (FN) is a broadly present soluble constituent of plasma and other body
fluids. FN usually exists as a dimer formed by two nearly identical (approximately 250
kDa) subunits covalently linked near their C-terminus by a pair of disulfide bonds.
Even though FN molecules are the product of a single gene, the resulting protein can
exist in multiple forms that arise from alternative spicing of pre-mRNA that can
generate up to 20 variants in humans. Splicing occurs in 3 regions of the FN gene,
leading to inclusion or exclusion of either one of the two type III repeats, named EDB
and EDA. The 91 amino acid sequence of EDB is identical in mice, rats, rabbits, dogs
and humans. EDB-containing FN is dispensable during embryogenesis, but is thought to
play a modulating role in the growth of connective tissues. In adults, EDB-FN is highly
expressed in normal tissues during angiogenesis, but not in mature vessels.
Furthermore, EDB-containing FN is abundantly found in solid tumors. It is mainly
produced by tumor cells and deposited in the subendothelial extracellular matrix of
solid tumors and hematological malignancies.
L19 is the single chain (scFv) human antibody that specifically targets EDB-FN.
Antibody fragments in small scFv formats are useful and versatile tools with various
advantages including rapid blood clearance and easy manipulation for antibody
engineering. The L19 antibody has been shown to recognize and target EDB-FN in vivo
both in animal models and patients. In past years, the L19 antibody has been conjugated
with numerous agents, including therapeutic radionuclides, and cytokines.
3. Interleukin-2 Cytokines are a heterogeneous group of soluble small polypeptides or
glycoproteins exerting pleiotropic or redundant effects promoting growth,
differentiation, and activation of normal cells. Cytokines produced by immune cells may
have pro- or anti-inflammatory and immune-modulatory activities. In malignant diseases,
cytokine production and release can be affected by the tumor itself and/or therapeutic
interventions. Cytokines may also display potent anticancer activities, but are
frequently hampered by treatment-related toxicities prohibiting dose-escalation to
therapeutically effective concentrations.
Interleukin-2 (IL2) plays an essential role in the activation phases of both specific
and natural immune responses. Even though it has no direct cytotoxic effects on cancer
cells, it can induce tumor regression by stimulating a potent cell-mediated response.
As such, IL2 is one of the treatment options in metastatic renal cell carcinoma
patients.
4. L19-IL2 In order to overcome toxicity while simultaneously delivering therapeutic doses
of IL2 to the tumor issue, the elegant option of combining the anti-EDB scFv L19
antibody with IL2 was pursued. It has been shown that the L19-IL2 conjugate mediates
the selective delivery and accumulation of IL2 at tumor endothelial cells, where the
EDB antigen is expressed during angiogenesis, leading to a dramatic increase of the
therapeutic efficacy of IL2. In the first preclinical study, 80% of the xenograft
tumors (including teratocarcinoma and small cell lung cancer) tackled with L19-IL2 were
subsequently composed of connective and necrotic tissue. At the same time an increase
in the levels of interferon-gamma and of cytotoxic lymphocytes, macrophages and natural
killer cells was found. These histological and therapeutic effects were underlined in a
orthotopic pancreatic cancer model treated with the antibody-cytokine conjugate. One
year later, this response percentage was repeated in Ramos lymphoma xenografts treated
with L19-IL2 and the anti-CD20 antibody rituximab whereby a complete remission lasting
for more than one year was found in 4 of the 5 mice treated.
In a recent phase I/II clinical trial, the use of L19-IL2 was proven safe in a variety of
stage IV malignancies with a recommended dose of 22.5 Mio IU. Furthermore, it was safely
combined with dacarbazine in stage IV melanoma patients maintaining the same recommended
dose level. In the first study, the overall objective response rate was reported to be 51%
after two cycles, and in the second this rate was 28% with one complete response still
ongoing 21 months after treatment initiation.
At present, three phase I/II clinical trials on L19-IL2 alone or in combination with
chemotherapy for patients with metastatic melanoma (ClinicalTrials.gov numbers: NCT01055522
and NCT01253096) and pancreatic cancer (ClinicalTrials.gov number: NCT01198522) are ongoing.
Summary Study Design
Details on SABR:
Prescribed dose is risk adapted to the metastatic localization and closeness to organs at
risk (in accordance with local protocol of MAASTRO clinic). Patients will receive a dose
schedule of 1 x 30 Gy, 3 x 15-20 Gy; 5 x 12 Gy; 8 x 7.5 Gy; to the 80 % or 100 % isodose
which should encompass the periphery of the PTV as closely as possible. Maximum dose is not
restricted but volumes with a dose higher than 105% must be located within the gross tumor.
The minimum dose allowed is EQD2α/ẞ10 =60 Gy, an ablative dose with EQD2iso=≥ 87.5Gy10
should always be the objective. Treatment will be delivered with intensity modulated arcs
treatments.
Step -1: Assessment of the toxicity of 10 Mio IU of L19-IL2 (n=3-6); this step is only
chosen when dose-limiting toxicity occurs in Step 1.
Administration of 10 Mio IU of L19-IL2 given on day 1, 3 and 5 of each 21-day cycle (max. 6
cycles) via i.v. bolus injection starting within one week after completion of SABR.
Toxicity will be scored at every intravenous (i.v.) drug administration and on day 7, 14 and
21 of the cycle, according to the CTCAE4.0 scoring system. Hematology, liver and kidney
function will be controlled on day 1, 3, and 5 prior to L19-IL2 administration, and on day
7, 14 and 21.
When in 0/3 patients a toxicity of grade 2 or more has occurred step 1 is considered safe.
If in 1/3 or more patients a grade 2 or more toxicity has occurred, 3 more patients will be
included in this step. If another grade 2 or more toxicity occurs in 1/3 or more patients,
the study will be stopped. When at maximum 1/6 patients experience grade 2 toxicity, this
step will be considered safe. When step 1 is considered safe, step 2 will be initiated.
Step 1: Assessment of the toxicity of 15 Mio IU of L19-IL2 (n=3-6) Administration of 15 Mio
IU of L19-IL2 given on day 1, 3 and 5 of each 21-day cycle (max. 6 cycles) via i.v. bolus
injection starting within one week after completion of SABR.
Toxicity will be scored at every i.v. drug administration and on day 7, 14 and 21 of the
cycle, according to the CTCAE4.0 scoring system. Hematology, liver and kidney function will
be controlled on day 1, 3, and 5 prior to L19-IL2 administration, and on day 7, 14 and 21.
When in 0/3 patients a toxicity of grade 2 or more has occurred step 1 is considered safe.
If in 1/3 or more patients a grade 2 or more toxicity has occurred, 3 more patients will be
included in this step. If another grade 2 or more toxicity occurs in 1/3 or more patients,
the study will be stopped. When at maximum 1/6 patients experience grade 2 toxicity, this
step will be considered safe. When step 1 is considered safe, step 2 will be initiated.
Step 2: Assessment of the toxicity of 22.5 Mio IU of L19-IL2 (n=3-6) Administration of 22.5
Mio IU of L19-IL2 given on day 1, 3 and 5 of each 21-day cycle (max. 6 cycles) via i.v.
bolus injection starting within one week after completion of SABR.
Toxicity will be scored at every i.v. drug administration and on day 7, 14 and 21 of the
cycle, according to the CTCAE4.0 scoring system. Hematology, liver and kidney function will
be controlled on day 1, 3, and 5 prior to L19-IL2 administration, and on day 7, 14 and 21.
When in 0/3 patients a toxicity of grade 2 or more has occurred step 1 is considered safe.
If in 1/3 or more patients a grade 2 or more toxicity has occurred, 3 more patients will be
included in this step. If another grade 2 or more toxicity occurs in 1/3 or more patients,
the study will be stopped. When at maximum 1/6 patients experience grade 2 toxicity, this
step will be considered safe. When step 1 is considered safe, step 2 will be initiated.
Step 3: Expansion cohort of the maximally tolerable dose (n=10) Administration of the
maximally tolerable dose of L19-IL2 given on day 1, 3 and 5 of each 21-day cycle (max. 6
cycles) via i.v. bolus injection starting within one week after completion of SABR.
Toxicity will be scored at every i.v. drug administration and on day 7, 14 and 21 of the
cycle, according to the CTCAE4.0 scoring system. Hematology, liver and kidney function will
be controlled on day 1, 3, and 5 prior to L19-IL2 administration, and on day 7, 14 and 21.
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT02648490 -
An Open-label, Phase 1 Study to Determine the Maximum Tolerated Dose of HLX07,in Patients With Advanced Solid Cancers
|
Phase 1 | |
Recruiting |
NCT01226407 -
Examine Maximum Tolerated Dose and Pharmacokinetic and Pharmacodynamic Profile
|
Phase 1 | |
Withdrawn |
NCT04891718 -
CIVO Intratumoural Microdosing of Anti-Cancer Therapies in Australia
|
Early Phase 1 | |
Completed |
NCT01447732 -
Phase 1 Study of CEP-37250/KHK2804 in Subjects With Advanced Solid Tumors
|
Phase 1 | |
Completed |
NCT04958226 -
A Study to Assess the Effect of Capivasertib on Midazolam in Patients With Advanced Solid Tumours
|
Phase 1 | |
Completed |
NCT04121910 -
A Study to Evaluate the Amount of Drug That Becomes Available in the Blood Circulation When Savolitinib is Administered Alone and in Combination With Itraconazole
|
Phase 1 | |
Terminated |
NCT01219543 -
A Phase I Study of AZD1480 in Patients With Advanced Solid Malignancies and Advanced Hepatocellular Carcinoma in the Escalation Phase,Non-Small Cell Lung Cancer(NSCLC) and Non-smokers With Lung Metastasis and Gastric Cancer and Solid Tumour in the Expansion Phase.
|
Phase 1 | |
Completed |
NCT01627990 -
Nivestim™ in Treatment of Malignant Diseases
|
N/A | |
Completed |
NCT01489826 -
A Phase 1 Study of Dexanabinol in Patients With Advanced Solid Tumours
|
Phase 1 | |
Terminated |
NCT01516645 -
Phase 1 Study of KHK2898 in Subjects With Advanced Solid Tumors
|
Phase 1 | |
Unknown status |
NCT01046461 -
Ramosetron, Aprepitant and Dexamethasone (RAD) in Solid Cancer
|
Phase 2 | |
Active, not recruiting |
NCT00467779 -
Study of GDC-0973/XL518 in Patients With Solid Tumors
|
Phase 1 | |
Completed |
NCT01300468 -
Study of PHA-848125AC in Adult Patients With Advanced/Metastatic Solid Tumors
|
Phase 1 |