Clinical Trials Logo

Clinical Trial Summary

All current forms of therapy for tumor patients are essentially based on clinical, genomic or histopathological criteria for the choice of therapy. However, the change in the tissue during therapy is of particular importance for patients, both with regard to the development of resistance and the side effect profile. This applies in particular to immunotherapies and their use in advanced tumor diseases. Preliminary work on the fully human tumor explant model has shown that the use of human donor tissue in the context of a special bioreactor makes it possible to improve the possibilities of predicting and better understanding the mechanism of action of a therapeutic agent. Since there is a considerable need for personalized and thus improved therapy management in the field of oncology, the aim of this study is on the one hand to improve the decisive tissue parameters for the cultivation of human donated material and on the other hand to understand the basic reaction patterns of the tissue to therapies.


Clinical Trial Description

Personalized therapy is still one of the great goals of oncology. In view of the success of checkpoint inhibitor therapies in selected solid tumors, the question remains why other tumor diseases do not respond in the same way to the therapy. However, this is not only limited to immunotherapies. In principle, the understanding of the dynamic changes in a patient's tissue has so far been very limited, both for predicting a therapy success and with regard to the mechanistic understanding of how a therapy works. Model systems for diseases are often animal models that reproduce the complexity of a multi-organ system, but show significant differences to humans at the tissue level and therefore have only little informative value. Cell culture experiments, on the other hand, have only little informative value with regard to the overall behavior of a tissue or even an organ or the disease situation. "Naturalistic" co-culture in the Petri dish (such as with organoid systems) does not allow any sensible transferable insights, even if complex cell compositions of fibroblasts, endothelium or immune cells are used. In contrast, there is another problem for in vivo tumor models: either there is a lack of flexibility with regard to the structural context or the species-specific system properties do not allow any conclusions to be drawn about the situation in humans. This is a massive limitation, especially for translational studies. The Tumor Explant Model System developed by us allows the structural integrity of the tissue context to be maintained in the context of obtaining a biopsy or removing a resection. The tissue sample obtained in this way is kept in equilibrium via a bioreactor and can thus be used for tests or is preserved in its context of the tissue. It is also possible in the sense of a personalized diagnosis and therapy to take into account the individual bandwidth of the composition of the tumor microenvironment. This approach has already been validated in a prospective study and the transferability of the results from the explant models to humans has been proven. In this situation, the systematic construction of explant models for other tumor entities and the use of these models for therapy development and for better understanding of pathoregulation in tissues. In addition to the tissue samples donated by the study participants, blood cells can also be used for testing the tissue.hand to understand the basic reaction patterns of the tissue to therapies. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04671654
Study type Observational
Source University Hospital Heidelberg
Contact Azaz Ahmed, Dr. med.
Phone +49-6221-56-7229
Email Azaz.Ahmed@med.uni-heidelberg.de
Status Recruiting
Phase
Start date August 1, 2020
Completion date August 2025

See also
  Status Clinical Trial Phase
Terminated NCT04551885 - FT516 in Combination With Monoclonal Antibodies in Advanced Solid Tumors Phase 1
Completed NCT05054348 - First-in-human Study of IO-108 as Single Agent and in Combination With a PD-1 Immune Check Point Inhibitor in Patients With Advanced Solid Tumors Phase 1
Active, not recruiting NCT04474470 - A Study to Evaluate NT219 Alone and in Combination With ERBITUX® (Cetuximab) in Adults With Advanced Solid Tumors and Head and Neck Cancer Phase 1/Phase 2
Recruiting NCT06088004 - Phase Ⅰ/Ⅱ Clinical Study to Evaluate ABO2011 Monotherapy in Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT05055609 - Open-Label, Dose-Escalation With Expansion to Assess the Safety, Tolerability, and PK of TRE-515 in Subjects With Solid Tumors Phase 1
Completed NCT04020185 - Safety and Efficacy Study of IMSA101 in Refractory Malignancies Phase 1/Phase 2
Withdrawn NCT05071846 - MVX-ONCO-2 in Advanced Solid Tumors Phase 1
Recruiting NCT05607199 - A First in Human Study of AUR 103 Calcium to Evaluate Safety, Pharmacokinetics and Pharmacodynamics Phase 1
Active, not recruiting NCT04552288 - Study of Benralizumab in People With Skin Side Effects Caused by Cancer Therapies Phase 2
Active, not recruiting NCT06026254 - A Rollover Study for Subjects Who Completed Participation in IMSA101-101 Trial Phase 1
Recruiting NCT06144671 - GT201 Injection For The Treatment Of Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06032845 - Cryoablation Combined With Tislelizumab Plus Lenvatinib In Previously Treated Solid Tumors (CASTLE-11) Phase 2
Not yet recruiting NCT06398418 - R-5780-01 In Combination With PD-1 Checkpoint Inhibitors (Checkpoint Protein on Immune Cells Called T Cells) in Patients With Solid Tumors Phase 1
Recruiting NCT05276284 - Thiopurine Enhanced Mutations for PD-1/Ligand-1 Efficacy Phase 1/Phase 2
Recruiting NCT04121442 - Isunakinra Alone and in Combination With a PD-1/PD-L1 Inhibitor in Patients With Solid Tumors Phase 1/Phase 2
Active, not recruiting NCT04221204 - A Monotherapy in Subjects With Advanced Solid Tumors Phase 1
Terminated NCT03992326 - Adoptive Transfer Of Autologous Tumor-Infiltrating Lymphocytes in Solid Tumors Phase 1
Terminated NCT05435339 - A Study to Evaluate Safety, Tolerability, and Preliminary Effect of the GEN1053 Antibody on Malignant Solid Tumors as Monotherapy Phase 1/Phase 2
Recruiting NCT04981119 - Solid Tumor Analysis for HLA Loss of Heterozygosity (LOH) and Apheresis for CAR T- Cell Manufacturing
Recruiting NCT06075849 - Phase I Study to Evaluate Safety and Anti-tumor Activity of PB101, an Anti-angiogenic Immunomodulating Agent Phase 1