View clinical trials related to Sickle Cell Hemoglobin C Disease.
Filter by:Sickle cell disease (SCD) is the most frequent inherited disease in the world. Literature reports that SCD patients display intolerance to exercise, important muscle weakness and profound remodeling of skeletal muscle including amyotrophy and rarefied microvascular network. Because strenuous exercise induces acidosis, hemorheological alterations, endothelial activation and oxidative stress, it constitutes a potential triggering factor of sickling and vaso-occlusive crisis. As a consequence, physical activity is usually discouraged in patients with SCD. However, moderate and regular physical activity seems to be not only safe but also beneficial for SCD patients.
Sickle Cell disease is caused by an inherited hemoglobin disorder. Healthy red blood cells are discoid and can deform and move through small blood vessels to carry oxygen to all parts of the body. In Sickle Cell disease, as red blood cells circulate and oxygen is released, the deoxygenated abnormal Hemoglobin S can begin to polymerize and cause red cells to become sticky and elongated. These "sickled" red cells are less flexible and will obstruct small blood vessels and prevent normal red cells from circulating freely, which limits oxygen delivery to tissues and organs. This is known as a "sickling crisis" or "vaso-occlusive crisis" and is the leading cause of hospitalization in patients with Sickle Cell disease. Patients suffering from a sickle crisis experience severe pain and are at risk of stroke, heart attack or even death. Current therapy is limited to hydration and symptomatic pain relief. The administration of MP4CO as an adjunct treatment to standard therapy may alleviate pain associated with a sickling crisis and potentially reduce the severity and duration of a crisis. This may shorten the time in hospital and potentially improve the quality of life for patients with sickle cell anemia.
Sickle Cell Anemia is caused by an inherited hemoglobin disorder. Healthy red blood cells are discoid and can deform and move through small blood vessels to carry oxygen to all parts of the body. In sickle cell disease, as red blood cells circulate and oxygen is released in the circulatory system, the deoxygenated abnormal hemoglobin S can begin to polymerize. When this occurs, the red blood cells can become sticky and elongated. These sickled red blood cells are less flexible and will obstruct small blood vessels and block normal red blood cells from traveling through the circulatory system, which limits oxygen delivery to tissues and organs. This is known as a "sickle crisis". Patients suffering from a sickle crisis experience severe pain and are at risk of stroke, heart attack or even death. By lowering the level of oxygen pressure at which sickling occurs and opening the vasculature and rapidly delivering oxygen directly to ischemic tissues, the addition of MP4CO to existing treatment protocols may alleviate pain associated with a sickle cell crisis, abort a crisis and/or potentially reduce the duration of a crisis. This could mean less time in the hospital and an improved quality of life for patients with sickle cell anemia.
This is a clinical research trial in which a novel preparatory regimen was developed for bone marrow transplant (BMT) which eliminates the primary obstacle to transplant, the lack of a matched sibling donor. It is believed this regimen is sufficiently efficacious and sufficiently gentle to apply to patients with sickle cell anemia and related disorders. It is proposed to characterize the efficacy and toxicity of this regimen in high risk patients with sickle cell anemia using criteria for patient selection that have been accepted in prior BMT trials in patients with sickle cell disease, specifically only the subset of patients whose prior clinical behavior indicates that they are at high risk for serious morbidity and early mortality. In addition, it is proposed to characterize the pathophysiology of a consistent febrile response seen in the haploidentical BMT regimen the investigators have developed at Thomas Jefferson University (TJU). The primary goal of this study is to determine the response rate to a reduced intensity conditioning regimen which consists of fludarabine, cytarabine, low dose total body irradiation and cyclophosphamide in patients with severe sickle cell anemia.