Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05211765
Other study ID # 78/20
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date March 7, 2021
Est. completion date March 2024

Study information

Verified date November 2023
Source University of Chile
Contact Diego Ugalde, MD
Phone +56974197896
Email diegougaldecastillo@gmail.com
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Fluid evaluation is relevant in critical care. Cardiac ultrasound is the first line of evaluation in hemodynamic characterization of patients in shock, to tailor therapy. Fluid responsiveness predictors allow to better decide when to administer fluids, and transesophagic view of superior vena cava is an effective one. Recently a transthoracic view of the superior vena cava has been described. The investigators aim to evaluate if the variations of superior vena cava can predict fluid responsiveness in critically il, ventilated patients. Hypothesis: Respiratory variations of superior vena cava diameter, evaluated with transthoracic ultrasound, can predict fluid responsiveness


Description:

Prospective evaluation of diameter variability of the superior vena cava by transthoracic echocardiography as fluid responsiveness predictor in critically ill patients: Background Fluid administration is frequent in critically ill patients, particularly during reanimation and its empirical use is recommended as an initial step during this phase. However, even though excess fluid administration is associated to negative outcomes fluid use is still being empirical and with scarce application of responsiveness predictors before its indication. Different measurements or maneuvers exist, that allow clinicians to predict if a patient would present a positive fluid response, usually defined as cardiac output increasing 15% when infusing 500ml of crystalloids, and application of these predictive parameters could have clinical benefits on outcomes by avoiding inappropriate fluid administration. As for the variables used, different types stand out. In general, flow or pressure variations originated in cardiothoracic interaction, auto-infusion and reduced fluid test evaluations such as the "mini" o "micro" fluid tests, in addition venous diameter variations in ultrasound evaluation with variable accuracy depending on the context. However, cardiothoracic interaction variables might have false positive results when right ventricular failure is present, given the cyclic increment on its afterload induced by positive pressure ventilation, reducing right ventricle stroke volume limiting its application in established or unknown and probable right heart failure if and advanced hemodynamic monitoring has not been performed to rule it out. In this context, venous evaluations and reduced volume fluid test have advantages, and particularly in patients in shock under positive pressure ventilation, superior vena cava variation, being a better predictor than inferior vena cava. However, traditionally, superior vena cava can only be observed with transesophageal echocardiography and that can be a limitation in resource limited settings. Recently a new transthoracic acoustic window has been described, using a vertical left parasternal approach that allows evaluation of the superior vena cave, and initially, this approach shows a good correlation with the transesophageal measurement, and acceptable feasibility in the pilot study patients. In this way, it can be postulated as possible, to evaluate if the variability of superior vena cava diameter on a transthoracic approach can be used as a fluid responsiveness predictor in critically ill patients on positive pressure ventilation. Hypothesis Superior vena cava diameter respiratory variation evaluated with transthoracic ultrasound can predict fluid responsiveness in critically ill patients in positive pressure ventilation. Objective To evaluate if superior vena cava respiratory diameter variation is associated with fluid responsiveness, when compared with the mini fluid infusion of 100ml evaluated with expiratory left ventricle outflow tract velocity time integral (LVOT-VTI) before and after fluid administration. Methods After evaluation, inclusion and exclusion criteria checking: A basal echocardiography is performed, main pattern and clinical data are recorded (age, sex, weight, height, main diagnosis, secondary diagnosis, length of stay, surgical procedures, sequential organ failure assesment (SOFA) score, renal replacement therapy), respiratory (ventilator mode, tidal volume, respiratory rate, positive end expiratory pressure (PEEP), plateau pressure, peak inspiratory pressure, autoPEEP, fraction of inspired oxygen (FiO2), I:E relation, total inspiratory time), hemodynamic data from unit monitors. (cardiac rate, systolic pressure, diastolic pressure, mean pressure, central venous pressure) and closest laboratory to evaluation (lactate, venous oxygen saturation (ScVO2), arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), pH, base excess (BE), bicarbonate (HCO3), carbon dioxide (CO2) arterio-venous difference, ) - Superior vena cava evaluation, Respiratory variation observed in M mode and measured. Registry of expiratory and inspiratory diameter (evaluated in the same cardiac cycle phase) - Using Apical 5 chamber view, basal LVOT-VTI would be obtained, 3 measurements in regular rhythms and 5 measurements in irregular rhythms such as atrial fibrillation. 100 ml will be infused without changing the view and end-expiratory LVOT-VTI would be obtained a minute after infusion in the same fashion as before. - Considering ultrasound evaluation is part of standard patient care, informed consent was waived by the ethical board. - For analysis, the proportion of variation in superior vena cava (SVC) and VTI variation would be calculated as percentage. - All values will be registered in a google drive table and then included in microsoft excel for coding and analyzed with Stata 12. - Fluid responsiveness will be defined as 10% increase in VTI with the "mini bolus" fluid test, considering the minimal detectable change. - For analysis, receiver operator curve (ROC) statistic will be done in Stata 12. - Summary variables of the population will be presented. - For diagnostic evaluation, the tool "roctab" for receiver operating characteristic curve will be used, obtaining cut off values, sensitivity, specificity and gray area in addition to traditional area under curve (AUC). A dichotomic value for simple orientation will be selected with an ideally balanced sensitivity and specificity for general use. Linear correlation will be explored to detect a continuous relation between SVC variation and VTI increase. - Window success will be recorded and proportion will be analysed during the months of the study to check for performance improvements that might be expected as a learning curve effect. - Additional data might allow post hoc analysis including window feasibility in association with clinical variables and - After the ultrasound evaluation, the result of the 100ml test will be informed to the treating physician. - Sample size: Considering a possible 50% loss with inadequate acoustic window, 100 evaluated patients would achieve at least 48 included to obtain AUC 0.7. (estimating 24 to be responders and 24 not responders)


Recruitment information / eligibility

Status Recruiting
Enrollment 100
Est. completion date March 2024
Est. primary completion date November 2023
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Patients >18 years, - Hospitalized in the Intensive Care Unit (ICU) with length of stay under 7 days - Under positive pressure ventilation with no inspiratory effort, - With hemodynamic instability (defined as abnormal peripheral perfusion or increased blood lactic or vasopressor infusion of norepinephrine >0.1 ug/kg/min to achieve adequate mean arterial pressure) Exclusion Criteria: - Spontaneous ventilatory effort - Lack of venous access - Carrier of carbapenemase or clostridium difficile - Lack of adequate superior vena cava (SVC) window (not allowing M-mode during both respiratory phases) - Severe aortic regurgitation - Impossibility to measure LVOT-VTI - Extracorporeal membrane oxygenation.

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
Superior vena cava transthoracic evaluation
The superior vena cava will be observed with a cardiac ultrasound machine, its diameter in different respiratory phases evaluated and compared with fluid response.

Locations

Country Name City State
Chile Hospital Clínico Universidad de Chile Santiago Región Metropolitana

Sponsors (1)

Lead Sponsor Collaborator
University of Chile

Country where clinical trial is conducted

Chile, 

References & Publications (21)

Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015 Jun 15;19(1):251. doi: 10.1186/s13054-015-0970-1. — View Citation

Bednarczyk JM, Fridfinnson JA, Kumar A, Blanchard L, Rabbani R, Bell D, Funk D, Turgeon AF, Abou-Setta AM, Zarychanski R. Incorporating Dynamic Assessment of Fluid Responsiveness Into Goal-Directed Therapy: A Systematic Review and Meta-Analysis. Crit Care Med. 2017 Sep;45(9):1538-1545. doi: 10.1097/CCM.0000000000002554. — View Citation

Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, Pottecher J, Lakhal K, Benzekri-Lefevre D, Molinari N, Boulain T, Lefrant JY, Muller L; AzuRea Group. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014 Nov 4;18(6):587. doi: 10.1186/s13054-014-0587-9. — View Citation

Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, Della Rocca G, Aldecoa C, Artigas A, Jog S, Sander M, Spies C, Lefrant JY, De Backer D; FENICE Investigators; ESICM Trial Group. Fluid challenges in intensive care: the FENICE study: A global inception cohort study. Intensive Care Med. 2015 Sep;41(9):1529-37. doi: 10.1007/s00134-015-3850-x. Epub 2015 Jul 11. Erratum In: Intensive Care Med. 2015 Sep;41(9):1737-8. multiple investigator names added. — View Citation

Jardin F, Dubourg O, Bourdarias JP. Echocardiographic pattern of acute cor pulmonale. Chest. 1997 Jan;111(1):209-17. doi: 10.1378/chest.111.1.209. No abstract available. — View Citation

Jardin F, Dubourg O, Margairaz A, Bourdarias JP. Inspiratory impairment in right ventricular performance during acute asthma. Chest. 1987 Nov;92(5):789-95. doi: 10.1378/chest.92.5.789. — View Citation

Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Depret F, Richard C, Monnet X. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019 Apr 11;23(1):116. doi: 10.1186/s13054-019-2413-x. — View Citation

Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, Teboul JL, Rice TW, Mythen M, Monnet X. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018 May 22;8(1):66. doi: 10.1186/s13613-018-0402-x. — View Citation

Messina A, Dell'Anna A, Baggiani M, Torrini F, Maresca GM, Bennett V, Saderi L, Sotgiu G, Antonelli M, Cecconi M. Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care. 2019 Jul 29;23(1):264. doi: 10.1186/s13054-019-2545-z. — View Citation

Michard F. Toward Precision Hemodynamic Management. Crit Care Med. 2017 Aug;45(8):1421-1423. doi: 10.1097/CCM.0000000000002458. No abstract available. — View Citation

Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016 Dec;42(12):1935-1947. doi: 10.1007/s00134-015-4134-1. Epub 2016 Jan 29. — View Citation

Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016 Dec;6(1):111. doi: 10.1186/s13613-016-0216-7. Epub 2016 Nov 17. — View Citation

Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009 Mar;37(3):951-6. doi: 10.1097/CCM.0b013e3181968fe1. — View Citation

Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, Zoric L, Suehs C, de La Coussaye JE, Molinari N, Lefrant JY; AzuRea Group. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011 Sep;115(3):541-7. doi: 10.1097/ALN.0b013e318229a500. — View Citation

Reuter DA, Chappell D, Perel A. The dark sides of fluid administration in the critically ill patient. Intensive Care Med. 2018 Jul;44(7):1138-1140. doi: 10.1007/s00134-017-4989-4. Epub 2017 Nov 11. No abstract available. — View Citation

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017 Mar;43(3):304-377. doi: 10.1007/s00134-017-4683-6. Epub 2017 Jan 18. — View Citation

Ugalde D, Haruel PA, Godement M, Prigent A, Vieillard-Baron A. Transthoracic echocardiography to evaluate the superior vena cava in critically ill patients: window description and pilot study. Intensive Care Med. 2019 Jul;45(7):1052-1054. doi: 10.1007/s00134-019-05621-1. Epub 2019 Apr 25. No abstract available. — View Citation

Vieillard-Baron A, Naeije R, Haddad F, Bogaard HJ, Bull TM, Fletcher N, Lahm T, Magder S, Orde S, Schmidt G, Pinsky MR. Diagnostic workup, etiologies and management of acute right ventricle failure : A state-of-the-art paper. Intensive Care Med. 2018 Jun;44(6):774-790. doi: 10.1007/s00134-018-5172-2. Epub 2018 May 9. — View Citation

Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K, Slama M, Prat G, Vieillard-Baron A. Comparison of Echocardiographic Indices Used to Predict Fluid Responsiveness in Ventilated Patients. Am J Respir Crit Care Med. 2017 Apr 15;195(8):1022-1032. doi: 10.1164/rccm.201604-0844OC. — View Citation

Vistisen ST, Juhl-Olsen P. Where are we heading with fluid responsiveness research? Curr Opin Crit Care. 2017 Aug;23(4):318-325. doi: 10.1097/MCC.0000000000000421. — View Citation

Wu Y, Zhou S, Zhou Z, Liu B. A 10-second fluid challenge guided by transthoracic echocardiography can predict fluid responsiveness. Crit Care. 2014 May 27;18(3):R108. doi: 10.1186/cc13891. — View Citation

* Note: There are 21 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Fluid responsiveness An increase of 10% or more in the left ventricle velocity time integral value (average of 3 in regular rhythms or 5 in irregular rhythms) measured with cardiac ultrasound in 5 chambers apical view after the infusion of 100ml bolus of intravenous crystalloid solution. 1 minute
See also
  Status Clinical Trial Phase
Not yet recruiting NCT05898126 - Renin-guided Hemodynamic Management in Patients With Shock N/A
Completed NCT05563701 - Evaluation of the LVivo Image Quality Scoring (IQS)
Recruiting NCT05066256 - LV Diastolic Function vs IVC Diameter Variation as Predictor of Fluid Responsiveness in Shock N/A
Not yet recruiting NCT06285513 - Cardiovascular Metabolic Remodeling in Shock
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Terminated NCT02755155 - Optimization of Therapeutic Human Serum Albumin Infusion in Selected Critically Ill Patients Phase 4
Not yet recruiting NCT01941472 - Transcutaneous pO2, Transcutaneous pCO2 and Central Venous pO2 Variations to Predict Fluid Responsiveness N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Terminated NCT01696175 - PICU Admission Lactate and Central Venous Oxymetry Study N/A
Recruiting NCT01157299 - Hemodynamic Evaluation of Preload Responsiveness in Children by Using PiCCO N/A
Recruiting NCT01174966 - Assessment of Transcutaneous Oxygen Tension/Oxygen Challenge Test in Intensive Care Unit (ICU) Patients N/A
Completed NCT00743522 - Programming Implantable Cardioverter Defibrillators in Patients With Primary Prevention Indication
Completed NCT03296891 - Point of Care Ultrasonography In The Management of Shock: A Pilot Study N/A
Recruiting NCT05922982 - Norepinephrine Weaning Guided by the Hypotension Prediction Index in Vasoplegic Shock After Cardiac Surgery N/A
Withdrawn NCT04705701 - Comparing Post Cardiac Surgery Outcomes in ESRD Patient's With Early Dialysis Versus Standard Care N/A
Recruiting NCT04615065 - Acutelines: a Large Data-/Biobank of Acute and Emergency Medicine
Completed NCT05330676 - Evaluation of Microcirculatory Function and Mitochondrial Respiration After Cardiovascular Surgery
Active, not recruiting NCT04079829 - Postoperative Respiratory Abnormalities
Completed NCT04089098 - VOLume and Vasopressor Therapy in Patients With Hemodynamic instAbility
Completed NCT03190408 - Variation in Fluids Administered in Shock